Normalized defining polynomial
\( x^{18} - 3 x^{17} + 47 x^{16} - 172 x^{15} + 1517 x^{14} - 5332 x^{13} + 22374 x^{12} - 75980 x^{11} + 148668 x^{10} + 42506 x^{9} - 580776 x^{8} + 29214 x^{7} + 5997076 x^{6} - 20620332 x^{5} + 41420961 x^{4} - 55016363 x^{3} + 52690863 x^{2} - 31834602 x + 13067109 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-215154340657376220394997912000000000=-\,2^{12}\cdot 5^{9}\cdot 11^{6}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{22} a^{14} + \frac{5}{11} a^{11} - \frac{3}{11} a^{10} + \frac{5}{11} a^{9} - \frac{1}{11} a^{8} + \frac{2}{11} a^{7} - \frac{3}{11} a^{6} + \frac{3}{11} a^{5} + \frac{1}{11} a^{3} - \frac{2}{11} a^{2} - \frac{2}{11} a - \frac{1}{2}$, $\frac{1}{22} a^{15} + \frac{5}{11} a^{12} - \frac{3}{11} a^{11} + \frac{5}{11} a^{10} - \frac{1}{11} a^{9} + \frac{2}{11} a^{8} - \frac{3}{11} a^{7} + \frac{3}{11} a^{6} + \frac{1}{11} a^{4} - \frac{2}{11} a^{3} - \frac{2}{11} a^{2} - \frac{1}{2} a$, $\frac{1}{66} a^{16} - \frac{1}{66} a^{14} - \frac{1}{66} a^{13} + \frac{5}{66} a^{12} + \frac{1}{6} a^{11} + \frac{5}{22} a^{10} - \frac{17}{66} a^{9} - \frac{5}{22} a^{8} - \frac{31}{66} a^{7} - \frac{9}{22} a^{6} - \frac{5}{22} a^{5} + \frac{7}{66} a^{4} + \frac{9}{22} a^{3} - \frac{3}{11} a^{2} - \frac{29}{66} a$, $\frac{1}{12422153753427658754065837740747858504806011010888355695957508} a^{17} + \frac{1581908561701918634508053343555154035214039855001254945823}{1035179479452304896172153145062321542067167584240696307996459} a^{16} + \frac{265384277489897729548798341856173389600843371100653753200533}{12422153753427658754065837740747858504806011010888355695957508} a^{15} - \frac{71474871773996767890569786632917045726975166364924019875149}{12422153753427658754065837740747858504806011010888355695957508} a^{14} - \frac{210371761752792955271165517385384940052373060914498346938424}{3105538438356914688516459435186964626201502752722088923989377} a^{13} + \frac{1094745492256137938823299747340004669219877019656152618959746}{3105538438356914688516459435186964626201502752722088923989377} a^{12} - \frac{15550564546569482901270693119107104982997077108679542995101}{690119652968203264114768763374881028044778389493797538664306} a^{11} + \frac{2614487459710570096684280376032782919170267215411533142757403}{6211076876713829377032918870373929252403005505444177847978754} a^{10} - \frac{395799719672368190387408048140620199542266950335491308930583}{2070358958904609792344306290124643084134335168481392615992918} a^{9} - \frac{1328330222166371818248131689357253914290886096856811293353540}{3105538438356914688516459435186964626201502752722088923989377} a^{8} + \frac{290094877433515483949337791859199538422114964243879150299531}{1035179479452304896172153145062321542067167584240696307996459} a^{7} - \frac{60394470300949717397789767779120092238128428243386573318419}{690119652968203264114768763374881028044778389493797538664306} a^{6} + \frac{2874089693681120731872060968942445921317028208855333609618919}{6211076876713829377032918870373929252403005505444177847978754} a^{5} - \frac{256103728146200835004139394305812317042797541485477976437119}{690119652968203264114768763374881028044778389493797538664306} a^{4} - \frac{45720741051783181132796622024653319885290513043497442733045}{1380239305936406528229537526749762056089556778987595077328612} a^{3} - \frac{2585316533328142244305394786160432224709997991208544824824209}{6211076876713829377032918870373929252403005505444177847978754} a^{2} + \frac{1651638057006165579033433487388318403918162312179806879297185}{4140717917809219584688612580249286168268670336962785231985836} a + \frac{42038916681930711378972003594828920808925384823387154682625}{125476300539673320748139775159069277826323343544326825211692}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4312}$, which has order $68992$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 654963.5034721284 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-95}) \), 3.3.15884.1, 3.3.361.1, 6.0.599215958000.1, 6.0.309512375.1, 9.9.4007556327104.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 19 | Data not computed | ||||||