Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 243 x^{14} - 525 x^{13} + 1582 x^{12} - 4929 x^{11} + 10920 x^{10} - 16353 x^{9} + 12519 x^{8} + 5367 x^{7} - 15371 x^{6} + 816 x^{5} + 27066 x^{4} - 37557 x^{3} - 14238 x^{2} + 30537 x + 22707 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-214589317581007476486780131079363=-\,3^{9}\cdot 7^{12}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{87} a^{10} - \frac{5}{87} a^{9} + \frac{4}{29} a^{8} + \frac{11}{87} a^{7} + \frac{3}{29} a^{6} - \frac{43}{87} a^{5} - \frac{4}{87} a^{4} + \frac{1}{87} a^{3} - \frac{14}{29} a^{2} - \frac{9}{29} a$, $\frac{1}{87} a^{11} - \frac{13}{87} a^{9} + \frac{13}{87} a^{8} + \frac{2}{29} a^{7} + \frac{2}{87} a^{6} - \frac{16}{87} a^{5} - \frac{19}{87} a^{4} - \frac{8}{87} a^{3} - \frac{5}{87} a^{2} + \frac{13}{29} a$, $\frac{1}{261} a^{12} - \frac{1}{261} a^{10} - \frac{2}{29} a^{9} - \frac{8}{87} a^{8} + \frac{2}{29} a^{7} + \frac{5}{261} a^{6} + \frac{5}{29} a^{5} - \frac{56}{261} a^{4} + \frac{4}{29} a^{3} + \frac{19}{87} a^{2} - \frac{7}{29} a$, $\frac{1}{4959} a^{13} + \frac{1}{1653} a^{12} + \frac{11}{4959} a^{11} - \frac{3}{551} a^{10} + \frac{74}{551} a^{9} - \frac{193}{1653} a^{8} + \frac{587}{4959} a^{7} + \frac{13}{551} a^{6} + \frac{5}{171} a^{5} + \frac{4}{1653} a^{4} + \frac{427}{1653} a^{3} + \frac{71}{1653} a^{2} - \frac{125}{551} a + \frac{7}{19}$, $\frac{1}{143811} a^{14} - \frac{7}{143811} a^{13} - \frac{4}{2523} a^{12} - \frac{194}{143811} a^{11} + \frac{575}{143811} a^{10} + \frac{89}{2523} a^{9} - \frac{14371}{143811} a^{8} - \frac{19433}{143811} a^{7} + \frac{5276}{47937} a^{6} + \frac{60863}{143811} a^{5} - \frac{10220}{143811} a^{4} + \frac{370}{2523} a^{3} + \frac{4496}{15979} a^{2} + \frac{170}{551} a - \frac{7}{19}$, $\frac{1}{1006677} a^{15} + \frac{1}{335559} a^{14} - \frac{8}{1006677} a^{13} + \frac{1151}{1006677} a^{12} - \frac{4787}{1006677} a^{11} + \frac{34}{143811} a^{10} - \frac{117631}{1006677} a^{9} - \frac{5744}{111853} a^{8} - \frac{94228}{1006677} a^{7} + \frac{109813}{1006677} a^{6} + \frac{69533}{143811} a^{5} + \frac{325151}{1006677} a^{4} + \frac{162436}{335559} a^{3} - \frac{2020}{111853} a^{2} + \frac{71}{203} a - \frac{2}{7}$, $\frac{1}{29193633} a^{16} - \frac{8}{29193633} a^{15} + \frac{50}{29193633} a^{14} - \frac{10}{1390173} a^{13} + \frac{48079}{29193633} a^{12} + \frac{49451}{29193633} a^{11} - \frac{42143}{29193633} a^{10} - \frac{1532947}{29193633} a^{9} + \frac{190381}{1536507} a^{8} + \frac{1446548}{9731211} a^{7} + \frac{3624878}{29193633} a^{6} - \frac{7349096}{29193633} a^{5} - \frac{10142462}{29193633} a^{4} + \frac{1211621}{9731211} a^{3} - \frac{92021}{1390173} a^{2} + \frac{21782}{111853} a + \frac{1314}{3857}$, $\frac{1}{3824365923} a^{17} + \frac{1}{67094139} a^{16} + \frac{1705}{3824365923} a^{15} + \frac{8}{1274788641} a^{14} + \frac{360505}{3824365923} a^{13} + \frac{4656718}{3824365923} a^{12} + \frac{10406222}{3824365923} a^{11} - \frac{3960028}{3824365923} a^{10} + \frac{7148375}{3824365923} a^{9} - \frac{40650049}{424929547} a^{8} + \frac{392342162}{3824365923} a^{7} + \frac{490745930}{3824365923} a^{6} + \frac{635671244}{1274788641} a^{5} - \frac{599915732}{3824365923} a^{4} - \frac{15375212}{1274788641} a^{3} + \frac{160243978}{424929547} a^{2} - \frac{4169657}{14652743} a - \frac{149084}{505267}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{9}$, which has order $729$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{152578}{3824365923} a^{17} - \frac{1296913}{3824365923} a^{16} + \frac{96548}{67094139} a^{15} - \frac{15336010}{3824365923} a^{14} + \frac{11914318}{1274788641} a^{13} - \frac{78412438}{3824365923} a^{12} + \frac{238098010}{3824365923} a^{11} - \frac{711435692}{3824365923} a^{10} + \frac{2581730}{6279747} a^{9} - \frac{2493119564}{3824365923} a^{8} + \frac{747754706}{1274788641} a^{7} - \frac{7592530}{131874687} a^{6} - \frac{1105719008}{3824365923} a^{5} + \frac{108795455}{1274788641} a^{4} + \frac{470710210}{424929547} a^{3} - \frac{663972126}{424929547} a^{2} - \frac{1467805}{14652743} a + \frac{58046}{72181} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8633591.79685 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.141267.1 x3, 3.3.47089.1, 6.0.59869095867.1, 6.0.59869095867.3, 6.0.1271403.1 x2, 9.3.2819175855281163.5 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1271403.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $31$ | 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.2 | $x^{3} + 217$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |