Normalized defining polynomial
\( x^{18} + 3 x^{16} + 54 x^{14} + 601 x^{12} - 690 x^{10} - 9045 x^{8} + 15760 x^{6} + 34545 x^{4} - 54837 x^{2} + 19683 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-214589317581007476486780131079363=-\,3^{9}\cdot 7^{12}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $62.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{2}{9} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{90} a^{10} + \frac{1}{30} a^{8} - \frac{1}{6} a^{7} + \frac{1}{30} a^{6} - \frac{1}{6} a^{5} - \frac{43}{90} a^{4} - \frac{1}{6} a^{3} - \frac{1}{5} a^{2} + \frac{1}{10}$, $\frac{1}{90} a^{11} - \frac{1}{45} a^{9} + \frac{1}{30} a^{7} + \frac{17}{90} a^{5} + \frac{1}{45} a^{3} - \frac{1}{2} a^{2} + \frac{4}{15} a - \frac{1}{2}$, $\frac{1}{270} a^{12} - \frac{1}{270} a^{10} + \frac{1}{45} a^{8} - \frac{1}{6} a^{7} - \frac{1}{27} a^{6} - \frac{1}{6} a^{5} + \frac{19}{270} a^{4} + \frac{1}{3} a^{3} + \frac{11}{45} a^{2} - \frac{1}{2} a - \frac{3}{10}$, $\frac{1}{270} a^{13} - \frac{1}{270} a^{11} + \frac{1}{45} a^{9} - \frac{1}{6} a^{8} - \frac{1}{27} a^{7} - \frac{1}{6} a^{6} + \frac{19}{270} a^{5} + \frac{1}{3} a^{4} + \frac{11}{45} a^{3} - \frac{1}{2} a^{2} - \frac{3}{10} a$, $\frac{1}{6750} a^{14} - \frac{1}{1125} a^{12} - \frac{31}{6750} a^{10} - \frac{1111}{6750} a^{8} + \frac{103}{1125} a^{6} - \frac{1}{2} a^{5} + \frac{11}{3375} a^{4} - \frac{1}{2} a^{3} + \frac{52}{225} a^{2} - \frac{7}{125}$, $\frac{1}{6750} a^{15} - \frac{1}{1125} a^{13} - \frac{31}{6750} a^{11} + \frac{7}{3375} a^{9} - \frac{1}{6} a^{8} + \frac{103}{1125} a^{7} + \frac{11}{3375} a^{5} - \frac{98}{225} a^{3} + \frac{1}{6} a^{2} + \frac{111}{250} a - \frac{1}{2}$, $\frac{1}{78659606250} a^{16} - \frac{722513}{26219868750} a^{14} - \frac{25776311}{26219868750} a^{12} + \frac{142895081}{39329803125} a^{10} - \frac{391395623}{26219868750} a^{8} - \frac{1}{6} a^{7} - \frac{1859459987}{13109934375} a^{6} + \frac{1}{3} a^{5} + \frac{5802411242}{39329803125} a^{4} - \frac{1}{6} a^{3} + \frac{5398504307}{13109934375} a^{2} - \frac{100009573}{485553125}$, $\frac{1}{707936456250} a^{17} + \frac{5465381}{117989409375} a^{15} - \frac{10711477}{13109934375} a^{13} + \frac{367363087}{707936456250} a^{11} - \frac{4306896023}{235978818750} a^{9} - \frac{1}{6} a^{8} - \frac{4263541711}{26219868750} a^{7} - \frac{1}{6} a^{6} - \frac{2261655058}{353968228125} a^{5} - \frac{1}{6} a^{4} - \frac{30668381818}{117989409375} a^{3} - \frac{1}{2} a^{2} + \frac{983745002}{4369978125} a$
Class group and class number
$C_{18}\times C_{18}$, which has order $324$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4096153}{28317458250} a^{17} - \frac{2427098}{4719576375} a^{15} - \frac{4264649}{524397375} a^{13} - \frac{2586070681}{28317458250} a^{11} + \frac{222978877}{4719576375} a^{9} + \frac{1393217413}{1048794750} a^{7} - \frac{20063675606}{14158729125} a^{5} - \frac{26996786471}{4719576375} a^{3} + \frac{1340863403}{349598250} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 107864181.516 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.141267.1 x3, 3.3.47089.2, 6.0.59869095867.1, 6.0.1271403.2 x2, 6.0.59869095867.4, 9.3.2819175855281163.4 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1271403.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $31$ | 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |