Normalized defining polynomial
\( x^{18} + 9 x^{16} - 2 x^{15} + 48 x^{14} - 33 x^{13} + 254 x^{12} - 372 x^{11} + 924 x^{10} - 993 x^{9} + 1437 x^{8} - 1272 x^{7} + 1431 x^{6} - 993 x^{5} + 555 x^{4} - 199 x^{3} + 54 x^{2} - 9 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21433361072561590534483968=-\,2^{12}\cdot 3^{21}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} - \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{8091} a^{15} + \frac{16}{261} a^{14} + \frac{1001}{8091} a^{13} - \frac{748}{8091} a^{12} + \frac{575}{8091} a^{11} - \frac{17}{2697} a^{10} + \frac{263}{2697} a^{9} + \frac{896}{8091} a^{8} - \frac{865}{8091} a^{7} + \frac{2575}{8091} a^{6} - \frac{3703}{8091} a^{5} - \frac{1309}{8091} a^{4} + \frac{3938}{8091} a^{3} - \frac{301}{2697} a^{2} - \frac{1415}{8091} a - \frac{3394}{8091}$, $\frac{1}{8091} a^{16} + \frac{412}{8091} a^{14} - \frac{332}{2697} a^{13} - \frac{67}{899} a^{12} + \frac{631}{8091} a^{11} - \frac{295}{2697} a^{10} + \frac{617}{8091} a^{9} - \frac{92}{2697} a^{8} + \frac{95}{8091} a^{7} + \frac{2869}{8091} a^{6} - \frac{142}{899} a^{5} + \frac{1075}{2697} a^{4} + \frac{1174}{8091} a^{3} - \frac{3926}{8091} a^{2} + \frac{2620}{8091} a - \frac{71}{261}$, $\frac{1}{290895723} a^{17} + \frac{6326}{290895723} a^{16} + \frac{2596}{290895723} a^{15} + \frac{31702319}{290895723} a^{14} + \frac{4220262}{32321747} a^{13} - \frac{25761383}{290895723} a^{12} + \frac{29616713}{290895723} a^{11} + \frac{38686040}{290895723} a^{10} + \frac{5634133}{290895723} a^{9} - \frac{69943381}{290895723} a^{8} - \frac{97301218}{290895723} a^{7} + \frac{55013864}{290895723} a^{6} - \frac{3511574}{96965241} a^{5} - \frac{39360335}{290895723} a^{4} + \frac{31217047}{96965241} a^{3} - \frac{4485985}{96965241} a^{2} - \frac{37403}{1042637} a + \frac{96053600}{290895723}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{21928142}{96965241} a^{17} - \frac{3741457}{96965241} a^{16} - \frac{198489655}{96965241} a^{15} + \frac{3289712}{32321747} a^{14} - \frac{351849787}{32321747} a^{13} + \frac{181144893}{32321747} a^{12} - \frac{5502460603}{96965241} a^{11} + \frac{2409753023}{32321747} a^{10} - \frac{6386654785}{32321747} a^{9} + \frac{6221726801}{32321747} a^{8} - \frac{28790534099}{96965241} a^{7} + \frac{23428772026}{96965241} a^{6} - \frac{28148672042}{96965241} a^{5} + \frac{5859249682}{32321747} a^{4} - \frac{3311530456}{32321747} a^{3} + \frac{3080825285}{96965241} a^{2} - \frac{981911767}{96965241} a + \frac{164578034}{96965241} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 535161.981474463 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3^2:S_3$ (as 18T24):
| A solvable group of order 54 |
| The 10 conjugacy class representatives for $C_3^2:S_3$ |
| Character table for $C_3^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 6.0.34992.1, 9.3.890970363072.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/31.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $29$ | 29.6.4.2 | $x^{6} - 29 x^{3} + 2523$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 29.6.0.1 | $x^{6} - x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 29.6.4.2 | $x^{6} - 29 x^{3} + 2523$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |