Normalized defining polynomial
\( x^{18} - 6 x^{17} + 3 x^{16} + 36 x^{15} - 72 x^{14} + 24 x^{13} + 677 x^{12} - 2154 x^{11} + 650 x^{10} - 12520 x^{9} + 93111 x^{8} - 184794 x^{7} + 51751 x^{6} + 253950 x^{5} - 276628 x^{4} - 32494 x^{3} + 217588 x^{2} - 143080 x + 34300 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21423624263414745793258586112=-\,2^{26}\cdot 3^{9}\cdot 7^{6}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{35} a^{13} - \frac{3}{35} a^{12} - \frac{9}{35} a^{11} - \frac{9}{35} a^{10} + \frac{16}{35} a^{9} + \frac{6}{35} a^{8} - \frac{13}{35} a^{7} - \frac{11}{35} a^{6} + \frac{11}{35} a^{5} + \frac{2}{5} a^{4} + \frac{16}{35} a^{3} - \frac{12}{35} a^{2} - \frac{2}{5} a$, $\frac{1}{35} a^{14} + \frac{17}{35} a^{12} - \frac{1}{35} a^{11} - \frac{11}{35} a^{10} - \frac{16}{35} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{13}{35} a^{6} + \frac{12}{35} a^{5} - \frac{12}{35} a^{4} + \frac{1}{35} a^{3} - \frac{3}{7} a^{2} - \frac{1}{5} a$, $\frac{1}{70} a^{15} - \frac{1}{70} a^{13} + \frac{9}{35} a^{12} - \frac{12}{35} a^{11} + \frac{3}{35} a^{10} - \frac{3}{70} a^{9} - \frac{9}{35} a^{8} + \frac{1}{35} a^{7} - \frac{1}{2} a^{5} - \frac{3}{35} a^{4} - \frac{23}{70} a^{3} + \frac{17}{35} a^{2} - \frac{2}{5} a$, $\frac{1}{490} a^{16} + \frac{1}{245} a^{15} + \frac{1}{98} a^{14} + \frac{3}{245} a^{13} + \frac{37}{245} a^{12} - \frac{1}{5} a^{11} + \frac{33}{490} a^{10} + \frac{108}{245} a^{8} - \frac{48}{245} a^{7} + \frac{153}{490} a^{6} - \frac{92}{245} a^{5} - \frac{107}{490} a^{4} - \frac{48}{245} a^{3} + \frac{1}{7} a^{2} - \frac{2}{35} a$, $\frac{1}{5195002178222079259474666403275703890} a^{17} - \frac{5063218262051060324420162273344617}{5195002178222079259474666403275703890} a^{16} - \frac{36277168709427471086558082468534857}{5195002178222079259474666403275703890} a^{15} - \frac{14632926964648806584761965627471127}{1039000435644415851894933280655140778} a^{14} - \frac{37028302206879856247289204045746626}{2597501089111039629737333201637851945} a^{13} - \frac{82608511783212910082408470754464621}{519500217822207925947466640327570389} a^{12} - \frac{149985626733730225378906547253601099}{5195002178222079259474666403275703890} a^{11} + \frac{1336649012039549332088952677150591539}{5195002178222079259474666403275703890} a^{10} - \frac{620432437915381203280747180177138126}{2597501089111039629737333201637851945} a^{9} + \frac{166055216415163333735879843880959334}{371071584158719947105333314519693135} a^{8} + \frac{979620949992726052925454198589391407}{5195002178222079259474666403275703890} a^{7} + \frac{31547839989676829319660573972360879}{98018909023058099235371064212749130} a^{6} - \frac{990810333196568501923462783943265599}{5195002178222079259474666403275703890} a^{5} + \frac{303310385312445379283839672453604929}{5195002178222079259474666403275703890} a^{4} + \frac{810249214422393117054110141840300932}{2597501089111039629737333201637851945} a^{3} + \frac{139479099272614053690147510129349857}{371071584158719947105333314519693135} a^{2} - \frac{28194974368694010647534016868571331}{74214316831743989421066662903938627} a + \frac{1877945757631697385188200415697060}{10602045261677712774438094700562661}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{496420080872530195347761}{134848137328992242090019970} a^{17} + \frac{1157413271139649587517433}{67424068664496121045009985} a^{16} + \frac{818540017525873407977846}{67424068664496121045009985} a^{15} - \frac{7898152328111331121651218}{67424068664496121045009985} a^{14} + \frac{14401135879399958821435597}{134848137328992242090019970} a^{13} + \frac{4055843878580149773105588}{67424068664496121045009985} a^{12} - \frac{325369432107158936268641837}{134848137328992242090019970} a^{11} + \frac{316808509812809483286727682}{67424068664496121045009985} a^{10} + \frac{108907746652542353083014165}{26969627465798448418003994} a^{9} + \frac{692391939408725994949483277}{13484813732899224209001997} a^{8} - \frac{37019154862225585029674522001}{134848137328992242090019970} a^{7} + \frac{393863627550981434291005564}{1272152238952757000849245} a^{6} + \frac{15976867477599680789995031567}{67424068664496121045009985} a^{5} - \frac{8410412741412790607063356313}{13484813732899224209001997} a^{4} + \frac{22023715586511625996090874653}{134848137328992242090019970} a^{3} + \frac{24135168416560644590280382662}{67424068664496121045009985} a^{2} - \frac{21236073514182469164529569514}{67424068664496121045009985} a + \frac{1216715851185466286411991180}{13484813732899224209001997} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21541865.688527487 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.728.1, 6.0.73008.1, 6.0.14309568.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.22.27 | $x^{12} + 2 x^{6} + 4$ | $6$ | $2$ | $22$ | $C_6\times S_3$ | $[3]_{3}^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.5.1 | $x^{6} - 52$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |