Normalized defining polynomial
\( x^{18} - x^{17} + 17 x^{16} - 32 x^{15} + 232 x^{14} - 360 x^{13} + 1208 x^{12} - 1088 x^{11} + 3453 x^{10} - 2429 x^{9} + 5853 x^{8} - 648 x^{7} + 3040 x^{6} - 736 x^{5} + 904 x^{4} - 96 x^{3} + 105 x^{2} - 9 x + 9 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-214099616939181656131950870528=-\,2^{36}\cdot 3^{9}\cdot 3547^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 3547$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{6} a^{14} + \frac{1}{6} a^{13} + \frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{6} a^{8} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{15} - \frac{1}{6} a^{13} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{36} a^{16} + \frac{1}{18} a^{14} + \frac{1}{9} a^{12} - \frac{2}{9} a^{11} + \frac{1}{6} a^{10} + \frac{1}{9} a^{9} - \frac{5}{36} a^{8} + \frac{2}{9} a^{7} - \frac{5}{18} a^{6} + \frac{2}{9} a^{5} - \frac{1}{2} a^{4} - \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{8674890363643747412124} a^{17} - \frac{739982414118273299}{2891630121214582470708} a^{16} + \frac{342536023019444488237}{4337445181821873706062} a^{15} + \frac{59270404716465723557}{1445815060607291235354} a^{14} - \frac{476791697761675512860}{2168722590910936853031} a^{13} - \frac{743028429052822533217}{4337445181821873706062} a^{12} + \frac{119014489128488003503}{481938353535763745118} a^{11} + \frac{1019428205073307695905}{4337445181821873706062} a^{10} + \frac{750959529225306139495}{8674890363643747412124} a^{9} + \frac{1103866161179865851561}{8674890363643747412124} a^{8} + \frac{1596526698257086222285}{4337445181821873706062} a^{7} + \frac{1881113653040553187903}{4337445181821873706062} a^{6} - \frac{138056912571711806987}{1445815060607291235354} a^{5} + \frac{1250033167878804020677}{4337445181821873706062} a^{4} + \frac{3797395170017914388}{80323058922627290853} a^{3} - \frac{104028998918176543271}{722907530303645617677} a^{2} + \frac{28274257575796811023}{107097411896836387804} a - \frac{461171682844107275185}{963876707071527490236}$
Class group and class number
$C_{79}$, which has order $79$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{35150113431402124022}{2168722590910936853031} a^{17} + \frac{3120628688240893099}{722907530303645617677} a^{16} - \frac{567191510649760785856}{2168722590910936853031} a^{15} + \frac{227960646078973673584}{722907530303645617677} a^{14} - \frac{7255408529053081084400}{2168722590910936853031} a^{13} + \frac{6560358807639953833168}{2168722590910936853031} a^{12} - \frac{3578458023396277579952}{240969176767881872559} a^{11} + \frac{5953507782873495891184}{2168722590910936853031} a^{10} - \frac{88837227155074880826494}{2168722590910936853031} a^{9} - \frac{5843839427357390747014}{2168722590910936853031} a^{8} - \frac{130887366609100121493520}{2168722590910936853031} a^{7} - \frac{131765136696966058406368}{2168722590910936853031} a^{6} - \frac{23997456862515661384960}{722907530303645617677} a^{5} - \frac{43092990920676728786032}{2168722590910936853031} a^{4} - \frac{593520458337831826832}{240969176767881872559} a^{3} - \frac{7371717688224881552864}{722907530303645617677} a^{2} - \frac{22728573483095756546}{80323058922627290853} a - \frac{52774309891317739759}{240969176767881872559} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5284504.97814 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 362880 |
| The 36 conjugacy class representatives for t18n888 |
| Character table for t18n888 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 9.9.29682796068864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | ${\href{/LocalNumberField/7.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $18$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.8.18.14 | $x^{8} + 2 x^{6} + 14 x^{4} + 4$ | $4$ | $2$ | $18$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ | |
| 2.8.18.14 | $x^{8} + 2 x^{6} + 14 x^{4} + 4$ | $4$ | $2$ | $18$ | $(((C_4 \times C_2): C_2):C_2):C_2$ | $[2, 2, 3, 7/2, 7/2]^{2}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 3547 | Data not computed | ||||||