Normalized defining polynomial
\( x^{18} - 9 x^{17} + 39 x^{16} - 108 x^{15} + 216 x^{14} - 336 x^{13} + 916 x^{12} - 3390 x^{11} + 7995 x^{10} - 11331 x^{9} + 9279 x^{8} - 2598 x^{7} + 55882 x^{6} - 172794 x^{5} + 233688 x^{4} - 176418 x^{3} + 78651 x^{2} - 19683 x + 2187 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-213997776327063094698935267328=-\,2^{12}\cdot 3^{9}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{6} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{7} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{18} a^{8} - \frac{1}{18} a^{7} + \frac{1}{18} a^{6} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{18} a^{9} - \frac{1}{6} a^{5} - \frac{2}{9} a^{3} - \frac{1}{6} a$, $\frac{1}{18} a^{10} - \frac{1}{2} a^{5} + \frac{4}{9} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{18} a^{11} - \frac{1}{18} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{324} a^{12} - \frac{1}{54} a^{11} - \frac{1}{324} a^{10} + \frac{1}{54} a^{9} - \frac{1}{54} a^{8} - \frac{2}{27} a^{7} + \frac{23}{324} a^{6} - \frac{2}{9} a^{5} - \frac{14}{81} a^{4} - \frac{7}{27} a^{3} - \frac{17}{108} a^{2} - \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{324} a^{13} - \frac{1}{324} a^{11} - \frac{1}{54} a^{9} - \frac{1}{54} a^{8} - \frac{13}{324} a^{7} + \frac{1}{27} a^{6} - \frac{73}{162} a^{5} - \frac{25}{54} a^{4} - \frac{47}{108} a^{3} - \frac{4}{9} a^{2} - \frac{5}{12} a - \frac{1}{2}$, $\frac{1}{324} a^{14} - \frac{1}{54} a^{11} - \frac{7}{324} a^{10} - \frac{1}{324} a^{8} + \frac{2}{27} a^{7} + \frac{1}{108} a^{6} + \frac{7}{27} a^{5} - \frac{71}{324} a^{4} + \frac{13}{54} a^{3} - \frac{13}{54} a^{2} + \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{324} a^{15} - \frac{7}{324} a^{11} - \frac{1}{54} a^{10} - \frac{1}{324} a^{9} + \frac{1}{54} a^{8} + \frac{1}{108} a^{7} + \frac{2}{27} a^{6} - \frac{17}{324} a^{5} - \frac{11}{27} a^{4} - \frac{2}{27} a^{3} - \frac{4}{9} a^{2} - \frac{1}{12} a - \frac{1}{2}$, $\frac{1}{1566349812} a^{16} - \frac{2}{391587453} a^{15} + \frac{91145}{783174906} a^{14} - \frac{637945}{783174906} a^{13} + \frac{157825}{391587453} a^{12} + \frac{6399203}{783174906} a^{11} - \frac{3782464}{391587453} a^{10} + \frac{7471117}{783174906} a^{9} + \frac{21369551}{1566349812} a^{8} + \frac{8889181}{783174906} a^{7} - \frac{13346938}{391587453} a^{6} + \frac{60907513}{783174906} a^{5} - \frac{279535}{87019434} a^{4} + \frac{98680873}{261058302} a^{3} - \frac{145571}{29006478} a^{2} + \frac{260057}{4834413} a - \frac{508289}{2148628}$, $\frac{1}{913181940396} a^{17} + \frac{283}{913181940396} a^{16} + \frac{304747981}{913181940396} a^{15} - \frac{823258253}{913181940396} a^{14} - \frac{298125725}{228295485099} a^{13} - \frac{694590379}{456590970198} a^{12} + \frac{23254738049}{913181940396} a^{11} + \frac{555242251}{83016540036} a^{10} + \frac{1980713300}{228295485099} a^{9} + \frac{3909812747}{228295485099} a^{8} - \frac{19830289903}{913181940396} a^{7} - \frac{36351863509}{913181940396} a^{6} + \frac{13285653335}{304393980132} a^{5} - \frac{146655782881}{304393980132} a^{4} + \frac{16257601147}{50732330022} a^{3} + \frac{4075970429}{16910776674} a^{2} + \frac{796605433}{1878975186} a + \frac{74079185}{313162531}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{206104042}{76098495033} a^{17} - \frac{1751884357}{76098495033} a^{16} + \frac{7167893864}{76098495033} a^{15} - \frac{18721516840}{76098495033} a^{14} + \frac{35337479204}{76098495033} a^{13} - \frac{52031593744}{76098495033} a^{12} + \frac{54530476808}{25366165011} a^{11} - \frac{56186727028}{6918045003} a^{10} + \frac{1342941202150}{76098495033} a^{9} - \frac{1679321661734}{76098495033} a^{8} + \frac{1103669797048}{76098495033} a^{7} - \frac{18906779468}{76098495033} a^{6} + \frac{11526598998524}{76098495033} a^{5} - \frac{1105304398840}{2818462779} a^{4} + \frac{11188381606928}{25366165011} a^{3} - \frac{2249698025876}{8455388337} a^{2} + \frac{83520555650}{939487593} a - \frac{4021472847}{313162531} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 196727117.739 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.44652.1 x3, 3.3.3721.1, 6.0.5981403312.1, 6.0.1607472.1 x2, 6.0.373837707.1, 9.3.89027206895808.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1607472.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $61$ | 61.9.6.1 | $x^{9} + 1830 x^{6} + 1112579 x^{3} + 226981000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 61.9.6.1 | $x^{9} + 1830 x^{6} + 1112579 x^{3} + 226981000$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |