Normalized defining polynomial
\( x^{18} + 570 x^{16} + 123975 x^{14} + 13494750 x^{12} + 809364375 x^{10} + 27846281250 x^{8} + 553885031250 x^{6} + 6230705625000 x^{4} + 36516983203125 x^{2} + 86016673828125 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21397106810613552737877882027518870016000000000=-\,2^{18}\cdot 3^{27}\cdot 5^{9}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $374.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3420=2^{2}\cdot 3^{2}\cdot 5\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3420}(1,·)$, $\chi_{3420}(299,·)$, $\chi_{3420}(2821,·)$, $\chi_{3420}(839,·)$, $\chi_{3420}(2221,·)$, $\chi_{3420}(2581,·)$, $\chi_{3420}(599,·)$, $\chi_{3420}(2159,·)$, $\chi_{3420}(481,·)$, $\chi_{3420}(3419,·)$, $\chi_{3420}(3121,·)$, $\chi_{3420}(3241,·)$, $\chi_{3420}(2219,·)$, $\chi_{3420}(1261,·)$, $\chi_{3420}(1199,·)$, $\chi_{3420}(1201,·)$, $\chi_{3420}(179,·)$, $\chi_{3420}(2939,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{2625} a^{6} - \frac{2}{7}$, $\frac{1}{2625} a^{7} - \frac{2}{7} a$, $\frac{1}{13125} a^{8} - \frac{2}{35} a^{2}$, $\frac{1}{13125} a^{9} - \frac{2}{35} a^{3}$, $\frac{1}{65625} a^{10} - \frac{2}{175} a^{4}$, $\frac{1}{65625} a^{11} - \frac{2}{175} a^{5}$, $\frac{1}{254953125} a^{12} - \frac{1}{2428125} a^{10} + \frac{2}{69375} a^{8} - \frac{1}{27195} a^{6} + \frac{58}{6475} a^{4} - \frac{12}{185} a^{2} - \frac{591}{1813}$, $\frac{1}{74701265625} a^{13} + \frac{4513}{711440625} a^{11} - \frac{604}{28457625} a^{9} - \frac{30328}{199203375} a^{7} - \frac{3013}{1897175} a^{5} + \frac{6843}{75887} a^{3} + \frac{87210}{531209} a$, $\frac{1}{2614544296875} a^{14} - \frac{149}{104581771875} a^{12} + \frac{27452}{4980084375} a^{10} + \frac{11378}{464807875} a^{8} + \frac{48067}{1394423625} a^{6} + \frac{2448}{2656045} a^{4} - \frac{1118778}{18592315} a^{2} + \frac{3337}{12691}$, $\frac{1}{2614544296875} a^{15} - \frac{1}{174302953125} a^{13} + \frac{7414}{996016875} a^{11} - \frac{2977}{188435625} a^{9} - \frac{48177}{464807875} a^{7} + \frac{204978}{13280225} a^{5} + \frac{763753}{18592315} a^{3} - \frac{1244773}{3718463} a$, $\frac{1}{7595251182421875} a^{16} + \frac{13}{168783359609375} a^{14} + \frac{73814}{101270015765625} a^{12} + \frac{1658189}{6751334384375} a^{10} - \frac{108891488}{4050800630625} a^{8} + \frac{9379262}{270053375375} a^{6} - \frac{742424364}{54010675075} a^{4} - \frac{232910378}{10802135015} a^{2} - \frac{1504547}{7373471}$, $\frac{1}{7595251182421875} a^{17} + \frac{13}{168783359609375} a^{15} + \frac{608}{101270015765625} a^{13} - \frac{143064233}{20254003153125} a^{11} - \frac{95653403}{4050800630625} a^{9} - \frac{101200948}{810160126125} a^{7} - \frac{209715998}{10802135015} a^{5} - \frac{365006538}{10802135015} a^{3} + \frac{467389834}{2160427003} a$
Class group and class number
$C_{2}\times C_{2}\times C_{618423708}$, which has order $2473694832$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22027035.20428972 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-285}) \), 3.3.361.1, 6.0.534837384000.9, 9.9.9025761726072081.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | R | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | $18$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 19 | Data not computed | ||||||