Normalized defining polynomial
\( x^{18} - 388 x^{16} - 1770 x^{15} + 79167 x^{14} + 461226 x^{13} - 7119103 x^{12} - 69040572 x^{11} + 412426863 x^{10} + 4399169196 x^{9} - 18676098374 x^{8} - 265581279066 x^{7} + 550446017812 x^{6} + 17062555046622 x^{5} + 128931293649937 x^{4} + 697432636061526 x^{3} + 2270159537466107 x^{2} + 2634341655131550 x + 6328125825565187 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21156460455554157443184358692743823704081665160523776=-\,2^{12}\cdot 7^{12}\cdot 37^{15}\cdot 47^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $807.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 37, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{222} a^{9} - \frac{3}{74} a^{7} + \frac{1}{74} a^{6} + \frac{9}{74} a^{5} - \frac{3}{37} a^{4} - \frac{49}{111} a^{3} + \frac{9}{74} a^{2} - \frac{83}{222} a + \frac{25}{74}$, $\frac{1}{222} a^{10} - \frac{3}{74} a^{8} + \frac{1}{74} a^{7} + \frac{9}{74} a^{6} - \frac{3}{37} a^{5} - \frac{49}{111} a^{4} + \frac{9}{74} a^{3} - \frac{83}{222} a^{2} + \frac{25}{74} a$, $\frac{1}{222} a^{11} + \frac{1}{74} a^{8} - \frac{9}{37} a^{7} + \frac{3}{74} a^{6} - \frac{77}{222} a^{5} + \frac{29}{74} a^{4} - \frac{77}{222} a^{3} + \frac{16}{37} a^{2} - \frac{27}{74} a + \frac{3}{74}$, $\frac{1}{7770} a^{12} + \frac{11}{7770} a^{11} - \frac{17}{7770} a^{10} + \frac{17}{7770} a^{9} - \frac{304}{3885} a^{8} + \frac{317}{1295} a^{7} + \frac{229}{1110} a^{6} - \frac{1814}{3885} a^{5} - \frac{4}{21} a^{4} + \frac{1817}{3885} a^{3} + \frac{97}{555} a^{2} - \frac{157}{1110} a + \frac{439}{1110}$, $\frac{1}{54390} a^{13} + \frac{1}{54390} a^{12} - \frac{11}{27195} a^{11} + \frac{39}{18130} a^{10} + \frac{9}{18130} a^{9} + \frac{1249}{18130} a^{8} + \frac{8039}{27195} a^{7} + \frac{2561}{27195} a^{6} + \frac{362}{1813} a^{5} - \frac{11141}{54390} a^{4} + \frac{23783}{54390} a^{3} - \frac{317}{1295} a^{2} + \frac{1273}{2590} a - \frac{64}{259}$, $\frac{1}{54390} a^{14} - \frac{1}{27195} a^{12} - \frac{4}{1813} a^{11} + \frac{43}{54390} a^{10} - \frac{44}{27195} a^{9} - \frac{6317}{54390} a^{8} - \frac{4793}{18130} a^{7} - \frac{9332}{27195} a^{6} - \frac{442}{1295} a^{5} - \frac{5918}{27195} a^{4} + \frac{8837}{54390} a^{3} - \frac{326}{777} a^{2} - \frac{3121}{7770} a - \frac{506}{1295}$, $\frac{1}{3937509660} a^{15} - \frac{1105}{131250322} a^{14} + \frac{35681}{3937509660} a^{13} + \frac{5267}{106419180} a^{12} - \frac{101186}{328125805} a^{11} - \frac{265166}{984377415} a^{10} + \frac{202583}{1968754830} a^{9} - \frac{37612403}{1968754830} a^{8} - \frac{259339351}{1312503220} a^{7} + \frac{25169821}{196875483} a^{6} + \frac{981410471}{3937509660} a^{5} - \frac{140076467}{1312503220} a^{4} + \frac{225277281}{1312503220} a^{3} + \frac{19395366}{46875115} a^{2} - \frac{85133417}{187500460} a - \frac{193315231}{562501380}$, $\frac{1}{507938746140} a^{16} + \frac{1}{11287527692} a^{15} + \frac{198559}{33862583076} a^{14} + \frac{9649}{2288012370} a^{13} + \frac{2716649}{169312915380} a^{12} - \frac{88800022}{42328228845} a^{11} + \frac{40351357}{25396937307} a^{10} + \frac{1499672}{863841405} a^{9} + \frac{2378303429}{72562678020} a^{8} + \frac{53960872649}{169312915380} a^{7} + \frac{15676363729}{169312915380} a^{6} + \frac{18512096392}{42328228845} a^{5} - \frac{23410329167}{50793874614} a^{4} - \frac{63315660263}{169312915380} a^{3} + \frac{14228331353}{72562678020} a^{2} + \frac{479102177}{2418755934} a - \frac{58949489}{1687504140}$, $\frac{1}{917698754500282002022988956392969142088190696032769319953164974446930751901676555641323620} a^{17} - \frac{210738454636353590076229242218068176850475685403080539030437822893254936154259}{917698754500282002022988956392969142088190696032769319953164974446930751901676555641323620} a^{16} + \frac{9167792766567654110675375393916691433689678988730555493047328061442992935476784}{76474896208356833501915746366080761840682558002730776662763747870577562658473046303443635} a^{15} + \frac{267434978319372025884881466695332839332606766950924394672226796385570775549675846751}{30589958483342733400766298546432304736273023201092310665105499148231025063389218521377454} a^{14} + \frac{7777195722599427123189228236513474325583830687490932800711779073755059829873610306}{5098326413890455566794383091072050789378837200182051777517583191371837510564869753562909} a^{13} - \frac{4149074964792660075455729308486437262146444298082005726170895980975808660704988965061}{305899584833427334007662985464323047362730232010923106651054991482310250633892185213774540} a^{12} + \frac{2351799233743296504020018675321087127813571568028634546145810572018521950982865568297}{1872854601020983677597936645699937024669776930679121061128908111116185207962605215594538} a^{11} - \frac{5520079195423094861659158377547438943054812985769774021085863302171409213522695264573}{4209627314221477073499949341252152027927480257031051926390665020398764916980167686428090} a^{10} - \frac{1510694266578769152319397501783734794040036979549072406434994328910135307638861090331307}{917698754500282002022988956392969142088190696032769319953164974446930751901676555641323620} a^{9} - \frac{25751346974682269962698678681212177703989143083304516191848748913580385463426307532998491}{183539750900056400404597791278593828417638139206553863990632994889386150380335311128264724} a^{8} - \frac{76217780105551204139798504689825279557048892809956458829347675661119884028945201758203629}{152949792416713667003831492732161523681365116005461553325527495741155125316946092606887270} a^{7} + \frac{64128117965199695104483194040146904648975743867946877922698533745403754938665262501620819}{152949792416713667003831492732161523681365116005461553325527495741155125316946092606887270} a^{6} - \frac{182057477248026128558453175939223546874598533153302074344424930546351989659439646183483473}{917698754500282002022988956392969142088190696032769319953164974446930751901676555641323620} a^{5} + \frac{8934185514958777581245435996737700685242684531698777187592051430696800407160229011675421}{65549911035734428715927782599497795863442192573769237139511783889066482278691182545808830} a^{4} - \frac{102812845490408603673079934874585847661705766913203777787864199476484320713679986300469807}{229424688625070500505747239098242285522047674008192329988291243611732687975419138910330905} a^{3} + \frac{367986261859758956033125056917941002104936683610413204541896650628476026533226742836819}{9364273005104918387989683228499685123348884653395605305644540555580926039813026077972690} a^{2} - \frac{20266452736311753354378548444001212401868182840591975367106207324739517272065150436466251}{65549911035734428715927782599497795863442192573769237139511783889066482278691182545808830} a - \frac{2230224383076017218217042112414306212461240230251182664171957978332333463376194501413}{27970945609445030388703982333901342378255682770970444693625681198662889813821712202180}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{777}\times C_{46620}$, which has order $26407106460$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 508181773.5034319 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-1739}) \), 3.1.6956.1 x3, 3.3.67081.2, 6.0.84143142704.1, Deg 6, Deg 6 x2, 9.3.74211952229135601401024.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $37$ | 37.6.5.3 | $x^{6} - 592$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 37.6.5.3 | $x^{6} - 592$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 37.6.5.3 | $x^{6} - 592$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $47$ | 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 47.6.3.2 | $x^{6} - 2209 x^{2} + 207646$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |