Normalized defining polynomial
\( x^{18} - 4 x^{17} + 20 x^{16} - 38 x^{15} - 56 x^{14} + 42 x^{13} - 1868 x^{12} - 2142 x^{11} - 766 x^{10} - 7126 x^{9} + 94236 x^{8} + 435918 x^{7} + 1272160 x^{6} + 4190046 x^{5} + 10123484 x^{4} + 18327094 x^{3} + 32238933 x^{2} + 42657746 x + 24890048 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21137726688804112981348984293163008=-\,2^{18}\cdot 3^{6}\cdot 7^{15}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{7} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} + \frac{3}{16} a^{3} + \frac{1}{16} a^{2} - \frac{1}{8} a$, $\frac{1}{64} a^{8} - \frac{3}{64} a^{6} - \frac{1}{32} a^{5} - \frac{5}{64} a^{4} + \frac{3}{16} a^{3} + \frac{7}{64} a^{2} - \frac{5}{32} a$, $\frac{1}{128} a^{9} - \frac{1}{128} a^{8} - \frac{3}{128} a^{7} + \frac{1}{128} a^{6} - \frac{3}{128} a^{5} + \frac{17}{128} a^{4} - \frac{5}{128} a^{3} - \frac{17}{128} a^{2} - \frac{27}{64} a - \frac{1}{2}$, $\frac{1}{512} a^{10} - \frac{1}{128} a^{8} - \frac{1}{256} a^{7} - \frac{1}{256} a^{6} + \frac{7}{256} a^{5} - \frac{29}{128} a^{4} - \frac{11}{256} a^{3} - \frac{71}{512} a^{2} - \frac{123}{256} a - \frac{1}{8}$, $\frac{1}{2048} a^{11} - \frac{1}{2048} a^{10} - \frac{1}{512} a^{9} + \frac{1}{1024} a^{8} + \frac{1}{128} a^{6} + \frac{63}{1024} a^{5} - \frac{81}{1024} a^{4} - \frac{305}{2048} a^{3} - \frac{431}{2048} a^{2} + \frac{347}{1024} a + \frac{1}{32}$, $\frac{1}{8192} a^{12} - \frac{1}{4096} a^{11} - \frac{3}{8192} a^{10} - \frac{13}{4096} a^{9} + \frac{15}{4096} a^{8} - \frac{9}{512} a^{7} + \frac{167}{4096} a^{6} + \frac{5}{128} a^{5} + \frac{1361}{8192} a^{4} + \frac{657}{4096} a^{3} + \frac{3461}{8192} a^{2} + \frac{1829}{4096} a - \frac{33}{128}$, $\frac{1}{65536} a^{13} - \frac{3}{65536} a^{12} - \frac{1}{65536} a^{11} - \frac{23}{65536} a^{10} + \frac{23}{8192} a^{9} + \frac{105}{32768} a^{8} - \frac{977}{32768} a^{7} - \frac{711}{32768} a^{6} - \frac{367}{65536} a^{5} - \frac{12719}{65536} a^{4} - \frac{10781}{65536} a^{3} + \frac{5701}{65536} a^{2} + \frac{5435}{32768} a + \frac{161}{1024}$, $\frac{1}{131072} a^{14} + \frac{3}{65536} a^{12} + \frac{3}{65536} a^{11} + \frac{3}{131072} a^{10} + \frac{45}{65536} a^{9} - \frac{179}{32768} a^{8} - \frac{349}{32768} a^{7} - \frac{6457}{131072} a^{6} + \frac{3937}{32768} a^{5} - \frac{2381}{65536} a^{4} + \frac{16103}{65536} a^{3} - \frac{34347}{131072} a^{2} - \frac{799}{65536} a + \frac{19}{2048}$, $\frac{1}{524288} a^{15} - \frac{1}{524288} a^{14} - \frac{1}{262144} a^{13} + \frac{3}{65536} a^{12} + \frac{5}{524288} a^{11} + \frac{271}{524288} a^{10} - \frac{115}{262144} a^{9} + \frac{473}{65536} a^{8} - \frac{11957}{524288} a^{7} + \frac{27437}{524288} a^{6} + \frac{29101}{262144} a^{5} - \frac{2001}{16384} a^{4} + \frac{124143}{524288} a^{3} - \frac{72251}{524288} a^{2} - \frac{121945}{262144} a + \frac{2789}{8192}$, $\frac{1}{1432354816} a^{16} + \frac{497}{716177408} a^{15} + \frac{2043}{1432354816} a^{14} + \frac{873}{716177408} a^{13} + \frac{22541}{1432354816} a^{12} - \frac{82017}{716177408} a^{11} - \frac{940665}{1432354816} a^{10} + \frac{688587}{716177408} a^{9} - \frac{10406621}{1432354816} a^{8} - \frac{1187433}{716177408} a^{7} + \frac{693601}{1432354816} a^{6} + \frac{23232855}{716177408} a^{5} + \frac{89250639}{1432354816} a^{4} + \frac{131724601}{716177408} a^{3} - \frac{72726307}{1432354816} a^{2} + \frac{310001941}{716177408} a + \frac{8038703}{22380544}$, $\frac{1}{22917677056} a^{17} + \frac{5}{22917677056} a^{16} + \frac{2497}{22917677056} a^{15} - \frac{8029}{22917677056} a^{14} + \frac{515}{22917677056} a^{13} - \frac{644795}{22917677056} a^{12} + \frac{3554209}{22917677056} a^{11} + \frac{585547}{22917677056} a^{10} - \frac{73748187}{22917677056} a^{9} - \frac{30892169}{22917677056} a^{8} - \frac{147152949}{22917677056} a^{7} + \frac{1331905521}{22917677056} a^{6} + \frac{1442194009}{22917677056} a^{5} + \frac{5165077887}{22917677056} a^{4} - \frac{764343085}{22917677056} a^{3} + \frac{6844519073}{22917677056} a^{2} - \frac{1201578945}{11458838528} a + \frac{100511469}{358088704}$
Class group and class number
$C_{3}\times C_{3}\times C_{2184}$, which has order $19656$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1090042674.5636587 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.3.28392.1, 3.3.8281.1, 6.0.5642739648.7, 6.0.480024727.1, 9.9.54951571781503488.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $7$ | 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13 | Data not computed | ||||||