Normalized defining polynomial
\( x^{18} - 3 x^{17} - 5 x^{16} - 5 x^{15} + 91 x^{14} - 141 x^{13} + 296 x^{12} - 206 x^{11} - 380 x^{10} + 741 x^{9} - 6056 x^{8} + 5713 x^{7} + 28219 x^{6} - 55511 x^{5} + 37362 x^{4} - 23297 x^{3} + 22127 x^{2} - 2534 x + 3241 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-210126339255361190328405271099=-\,7^{12}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(133=7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{133}(64,·)$, $\chi_{133}(1,·)$, $\chi_{133}(65,·)$, $\chi_{133}(8,·)$, $\chi_{133}(11,·)$, $\chi_{133}(18,·)$, $\chi_{133}(88,·)$, $\chi_{133}(30,·)$, $\chi_{133}(37,·)$, $\chi_{133}(102,·)$, $\chi_{133}(39,·)$, $\chi_{133}(106,·)$, $\chi_{133}(107,·)$, $\chi_{133}(46,·)$, $\chi_{133}(113,·)$, $\chi_{133}(50,·)$, $\chi_{133}(121,·)$, $\chi_{133}(58,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{385} a^{15} + \frac{1}{5} a^{14} + \frac{174}{385} a^{13} + \frac{17}{55} a^{12} + \frac{24}{385} a^{11} - \frac{18}{55} a^{10} + \frac{18}{55} a^{9} - \frac{8}{55} a^{8} - \frac{72}{385} a^{7} + \frac{4}{55} a^{6} + \frac{8}{77} a^{5} - \frac{1}{5} a^{4} + \frac{57}{385} a^{3} - \frac{27}{55} a^{2} + \frac{4}{55} a + \frac{17}{55}$, $\frac{1}{44065945} a^{16} + \frac{45114}{44065945} a^{15} - \frac{14571152}{44065945} a^{14} + \frac{9291857}{44065945} a^{13} + \frac{3148372}{44065945} a^{12} + \frac{4861847}{44065945} a^{11} - \frac{2732183}{6295135} a^{10} + \frac{546218}{6295135} a^{9} - \frac{3259804}{44065945} a^{8} - \frac{10666206}{44065945} a^{7} - \frac{12801049}{44065945} a^{6} + \frac{9780143}{44065945} a^{5} + \frac{12777668}{44065945} a^{4} + \frac{365082}{8813189} a^{3} + \frac{22263}{114457} a^{2} - \frac{556691}{1259027} a + \frac{1749854}{6295135}$, $\frac{1}{622519484474364578450802683138755} a^{17} + \frac{2256362007238795144676046}{622519484474364578450802683138755} a^{16} - \frac{599091542600716352369796579061}{622519484474364578450802683138755} a^{15} + \frac{77582138178726874375107517826339}{622519484474364578450802683138755} a^{14} - \frac{3154223620977532465777589592078}{12704479274987032213281687410995} a^{13} - \frac{45235527786438652124394589704857}{622519484474364578450802683138755} a^{12} - \frac{51890253222453306148546186606633}{124503896894872915690160536627751} a^{11} + \frac{10943059921483869493751584551213}{88931354924909225492971811876965} a^{10} + \frac{265441920153498035943371237080861}{622519484474364578450802683138755} a^{9} + \frac{165686476329819006992158115584933}{622519484474364578450802683138755} a^{8} - \frac{95065768087596188406644444437387}{622519484474364578450802683138755} a^{7} + \frac{43074098076226784068286018772959}{622519484474364578450802683138755} a^{6} + \frac{224843403835557556028357003484049}{622519484474364578450802683138755} a^{5} + \frac{35711453860701122518579957298895}{124503896894872915690160536627751} a^{4} - \frac{157407058426917529781675025541434}{622519484474364578450802683138755} a^{3} - \frac{31554002124590335212435271147371}{88931354924909225492971811876965} a^{2} - \frac{809923873020852902345220245234}{8084668629537202317542891988815} a - \frac{35726852831103139375661574021596}{88931354924909225492971811876965}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 833965.243856 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.3.361.1, 3.3.17689.2, \(\Q(\zeta_{7})^+\), 3.3.17689.1, 6.0.2476099.1, 6.0.5945113699.2, 6.0.16468459.1, 6.0.5945113699.1, 9.9.5534900853769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19 | Data not computed | ||||||