Normalized defining polynomial
\( x^{18} + 7 x^{16} - 13 x^{15} - 111 x^{14} - 193 x^{13} + 159 x^{12} + 31 x^{11} + 3787 x^{10} + 8926 x^{9} - 231 x^{8} - 20046 x^{7} - 64412 x^{6} - 46103 x^{5} + 51290 x^{4} + 114416 x^{3} + 167146 x^{2} + 29932 x + 2471 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-210126339255361190328405271099=-\,7^{12}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} + \frac{1}{7} a^{10} + \frac{3}{7} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} + \frac{3}{7} a^{5} - \frac{3}{7} a^{4} + \frac{3}{7} a^{3}$, $\frac{1}{7} a^{12} + \frac{2}{7} a^{10} - \frac{2}{7} a^{9} + \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{3}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{4} - \frac{3}{7} a^{3}$, $\frac{1}{7} a^{13} + \frac{3}{7} a^{10} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{5} + \frac{3}{7} a^{4} - \frac{2}{7} a^{3}$, $\frac{1}{21} a^{15} + \frac{1}{21} a^{14} + \frac{1}{21} a^{13} + \frac{1}{21} a^{12} - \frac{1}{21} a^{11} - \frac{10}{21} a^{10} - \frac{1}{21} a^{9} - \frac{4}{21} a^{8} - \frac{10}{21} a^{7} + \frac{5}{21} a^{6} - \frac{5}{21} a^{5} + \frac{2}{7} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{794201541} a^{16} - \frac{13284010}{794201541} a^{15} - \frac{36358132}{794201541} a^{14} - \frac{14347465}{794201541} a^{13} + \frac{7362716}{264733847} a^{12} + \frac{39142732}{794201541} a^{11} - \frac{115255169}{794201541} a^{10} + \frac{327835051}{794201541} a^{9} + \frac{172416814}{794201541} a^{8} - \frac{17984276}{113457363} a^{7} - \frac{705621}{37819121} a^{6} + \frac{7061740}{113457363} a^{5} + \frac{24169363}{113457363} a^{4} + \frac{105854072}{794201541} a^{3} - \frac{7552388}{37819121} a^{2} - \frac{16524719}{113457363} a - \frac{18394798}{113457363}$, $\frac{1}{19092711683641792184786862999249} a^{17} - \frac{5266869186021441414253}{19092711683641792184786862999249} a^{16} + \frac{24061280403732953091341687893}{19092711683641792184786862999249} a^{15} - \frac{495505027140356141615863218620}{19092711683641792184786862999249} a^{14} + \frac{593952000376539081059433900086}{19092711683641792184786862999249} a^{13} - \frac{442030237058995702577148896891}{6364237227880597394928954333083} a^{12} - \frac{783809025212315417605822540726}{19092711683641792184786862999249} a^{11} - \frac{7292378789324272225380021250816}{19092711683641792184786862999249} a^{10} + \frac{5034129616760167204573530820607}{19092711683641792184786862999249} a^{9} - \frac{9290854386133929389716622945389}{19092711683641792184786862999249} a^{8} + \frac{1349159865658371705354516387550}{19092711683641792184786862999249} a^{7} + \frac{4255028071504164720133066433822}{19092711683641792184786862999249} a^{6} + \frac{2545416167888240472208345769266}{6364237227880597394928954333083} a^{5} - \frac{1619146187137263974829633915046}{19092711683641792184786862999249} a^{4} - \frac{2931191166283424985791773260433}{19092711683641792184786862999249} a^{3} + \frac{29578567691760421981320556536}{909176746840085342132707761869} a^{2} - \frac{104749766483628822822641259405}{909176746840085342132707761869} a + \frac{1222789196397993321934554171442}{2727530240520256026398123285607}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 898497.710099 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-19}) \), 3.1.931.1 x3, 3.3.361.1, 6.0.16468459.2, 6.0.2476099.1, 6.0.5945113699.3 x2, 9.3.105163116221611.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.5945113699.3 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $19$ | 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.5 | $x^{6} + 1216$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |