Normalized defining polynomial
\( x^{18} - 6 x^{17} - 123 x^{16} + 214 x^{15} + 14436 x^{14} + 23100 x^{13} - 870492 x^{12} - 5139900 x^{11} + 25244937 x^{10} + 362433664 x^{9} + 788783403 x^{8} - 10162090644 x^{7} - 78907957919 x^{6} - 102611054952 x^{5} + 1558542590511 x^{4} + 11074200636090 x^{3} + 37880347635009 x^{2} + 68911053919794 x + 63247295717733 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21005238210476463669563930923405113491534905344=-\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $374.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(2629,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(1033,·)$, $\chi_{4788}(3659,·)$, $\chi_{4788}(2063,·)$, $\chi_{4788}(467,·)$, $\chi_{4788}(4153,·)$, $\chi_{4788}(3611,·)$, $\chi_{4788}(1597,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(419,·)$, $\chi_{4788}(4225,·)$, $\chi_{4788}(3503,·)$, $\chi_{4788}(1907,·)$, $\chi_{4788}(311,·)$, $\chi_{4788}(3193,·)$, $\chi_{4788}(2557,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{4} - \frac{3}{7} a^{2} - \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{5} + \frac{3}{7} a^{2} + \frac{2}{7} a + \frac{3}{7}$, $\frac{1}{49} a^{6} - \frac{2}{49} a^{5} - \frac{3}{49} a^{4} - \frac{1}{49} a^{3} + \frac{9}{49} a^{2} + \frac{10}{49} a - \frac{6}{49}$, $\frac{1}{49} a^{7} - \frac{2}{7} a^{2} - \frac{2}{7} a + \frac{9}{49}$, $\frac{1}{686} a^{8} + \frac{1}{343} a^{7} - \frac{3}{98} a^{4} + \frac{1}{49} a^{3} + \frac{27}{98} a^{2} + \frac{22}{343} a + \frac{123}{686}$, $\frac{1}{686} a^{9} - \frac{2}{343} a^{7} - \frac{3}{98} a^{5} - \frac{3}{49} a^{4} - \frac{5}{98} a^{3} + \frac{78}{343} a^{2} - \frac{23}{98} a + \frac{73}{343}$, $\frac{1}{686} a^{10} - \frac{3}{343} a^{7} - \frac{1}{98} a^{6} + \frac{2}{49} a^{5} + \frac{5}{98} a^{4} + \frac{1}{343} a^{3} + \frac{19}{98} a^{2} - \frac{23}{49} a - \frac{55}{343}$, $\frac{1}{4802} a^{11} + \frac{1}{4802} a^{10} + \frac{3}{4802} a^{9} - \frac{3}{4802} a^{8} - \frac{47}{4802} a^{7} + \frac{5}{686} a^{6} + \frac{5}{343} a^{5} + \frac{99}{2401} a^{4} + \frac{78}{2401} a^{3} - \frac{837}{2401} a^{2} + \frac{1415}{4802} a - \frac{2285}{4802}$, $\frac{1}{43218} a^{12} - \frac{1}{14406} a^{11} + \frac{3}{4802} a^{10} - \frac{1}{43218} a^{9} - \frac{1}{2058} a^{8} + \frac{107}{14406} a^{7} - \frac{19}{3087} a^{6} + \frac{137}{2401} a^{5} + \frac{139}{7203} a^{4} - \frac{194}{7203} a^{3} + \frac{937}{4802} a^{2} + \frac{173}{686} a - \frac{1237}{7203}$, $\frac{1}{457721838} a^{13} - \frac{3971}{457721838} a^{12} - \frac{8905}{152573946} a^{11} + \frac{146537}{457721838} a^{10} - \frac{251095}{457721838} a^{9} - \frac{20317}{76286973} a^{8} + \frac{645278}{228860919} a^{7} - \frac{2274271}{228860919} a^{6} - \frac{1839764}{76286973} a^{5} - \frac{1090595}{152573946} a^{4} + \frac{10017977}{152573946} a^{3} + \frac{600815}{1495823} a^{2} + \frac{6081146}{76286973} a + \frac{71957077}{152573946}$, $\frac{1}{457721838} a^{14} - \frac{625}{65388834} a^{12} - \frac{5617}{65388834} a^{11} + \frac{14131}{21796278} a^{10} - \frac{8045}{65388834} a^{9} + \frac{239}{549486} a^{8} + \frac{952727}{152573946} a^{7} - \frac{15464}{4670631} a^{6} - \frac{244982}{10898139} a^{5} + \frac{677165}{10898139} a^{4} - \frac{758368}{10898139} a^{3} + \frac{4809295}{21796278} a^{2} - \frac{72007}{148274} a + \frac{48586397}{152573946}$, $\frac{1}{1373165514} a^{15} - \frac{20}{32694417} a^{12} - \frac{806}{10898139} a^{11} + \frac{2812}{32694417} a^{10} + \frac{43283}{65388834} a^{9} + \frac{17414}{25428991} a^{8} - \frac{284374}{32694417} a^{7} - \frac{103660}{14011893} a^{6} + \frac{352267}{21796278} a^{5} + \frac{1867321}{32694417} a^{4} - \frac{491635}{7265426} a^{3} - \frac{3200068}{10898139} a^{2} + \frac{885715}{4487469} a + \frac{3591905}{32694417}$, $\frac{1}{122720137922386921099932} a^{16} - \frac{3153626039057}{20453356320397820183322} a^{15} - \frac{7133285101322}{10226678160198910091661} a^{14} + \frac{366685801163}{417415435110159595578} a^{13} - \frac{497397494620802}{486984674295186194841} a^{12} - \frac{28695540528584450}{1460954022885558584523} a^{11} + \frac{30858360423138719}{162328224765062064947} a^{10} - \frac{497264852409487214}{3408892720066303363887} a^{9} + \frac{8704007453063270855}{40906712640795640366644} a^{8} - \frac{460188612103220245447}{61360068961193460549966} a^{7} + \frac{1510139061115055521}{417415435110159595578} a^{6} - \frac{75606249516539100619}{1460954022885558584523} a^{5} + \frac{100447405111873694405}{1947938697180744779364} a^{4} - \frac{47593898713420182421}{973969348590372389682} a^{3} - \frac{1245617392567827671521}{3408892720066303363887} a^{2} + \frac{4544997363294086858662}{10226678160198910091661} a - \frac{648380067794798393179}{13635570880265213455548}$, $\frac{1}{8550648665457343782084596297474154612} a^{17} + \frac{27882002387167}{8550648665457343782084596297474154612} a^{16} + \frac{163738277522931485851756589}{2137662166364335945521149074368538653} a^{15} + \frac{326320740652895478581496457}{1425108110909557297014099382912359102} a^{14} + \frac{11395272262077659661460213}{22620763665231068206573006077973954} a^{13} - \frac{426854399516067062062626489136}{101793436493539806929578527350882793} a^{12} - \frac{7100618867126311109241967449187}{203586872987079613859157054701765586} a^{11} - \frac{51695206528305581759367657039553}{83829888877032782177299963700727006} a^{10} - \frac{290577064640640430422813563452559}{950072073939704864676066255274906068} a^{9} - \frac{1151651633123528429572063638570725}{8550648665457343782084596297474154612} a^{8} - \frac{17333745238987436606321844430130653}{4275324332728671891042298148737077306} a^{7} - \frac{2887720307358594821188112053480279}{305380309480619420788735582052648379} a^{6} + \frac{21642998359193514945295749607951997}{407173745974159227718314109403531172} a^{5} - \frac{1787122317057972872031247498414937}{407173745974159227718314109403531172} a^{4} + \frac{260756313061674427986724744331112}{79172672828308738723005521272908839} a^{3} + \frac{185985430923939604391632691681526437}{1425108110909557297014099382912359102} a^{2} - \frac{710199642350859529301041520859761003}{2850216221819114594028198765824718204} a + \frac{601510961698538668637950111646964959}{2850216221819114594028198765824718204}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}\times C_{6}\times C_{6}\times C_{6}\times C_{12}\times C_{4788}$, which has order $297851904$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 204714035.62195203 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.1432809.4, 3.3.1432809.2, 3.3.17689.1, \(\Q(\zeta_{9})^+\), 6.0.2759153551366464.3, 6.0.2759153551366464.5, 6.0.3784847121216.1, 6.0.432081216.1, 9.9.2941473244627851129.12 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 3.6.9.10 | $x^{6} + 6 x^{4} + 3$ | $6$ | $1$ | $9$ | $C_6$ | $[2]_{2}$ | |
| 7 | Data not computed | ||||||
| $19$ | 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 19.3.2.3 | $x^{3} - 304$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |