Normalized defining polynomial
\( x^{18} - 30 x^{16} - 426 x^{15} + 3546 x^{14} - 5478 x^{13} + 112168 x^{12} - 653382 x^{11} + 5940777 x^{10} - 27557386 x^{9} + 54773046 x^{8} - 196704744 x^{7} + 3951456340 x^{6} + 787839768 x^{5} + 53542445592 x^{4} + 25422376576 x^{3} + 441096494976 x^{2} + 121672015488 x + 2149375249792 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21005238210476463669563930923405113491534905344=-\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $374.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(2243,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(2063,·)$, $\chi_{4788}(1873,·)$, $\chi_{4788}(3155,·)$, $\chi_{4788}(3649,·)$, $\chi_{4788}(923,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(4453,·)$, $\chi_{4788}(4561,·)$, $\chi_{4788}(4225,·)$, $\chi_{4788}(1223,·)$, $\chi_{4788}(3313,·)$, $\chi_{4788}(83,·)$, $\chi_{4788}(2101,·)$, $\chi_{4788}(311,·)$, $\chi_{4788}(1151,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{4} a^{5} - \frac{3}{16} a^{4} + \frac{7}{16} a^{3} + \frac{1}{8} a^{2} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{7}{32} a^{5} + \frac{3}{32} a^{4} - \frac{5}{16} a^{3} + \frac{1}{16} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} + \frac{1}{32} a^{6} + \frac{1}{8} a^{5} + \frac{1}{32} a^{4} - \frac{1}{2} a^{3} + \frac{7}{16} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} - \frac{1}{16} a^{5} + \frac{7}{32} a^{4} - \frac{1}{2} a^{3} + \frac{3}{16} a^{2} - \frac{3}{8} a$, $\frac{1}{128} a^{12} - \frac{1}{64} a^{11} - \frac{1}{128} a^{10} - \frac{1}{128} a^{8} - \frac{1}{64} a^{7} - \frac{7}{128} a^{6} + \frac{7}{32} a^{5} + \frac{5}{32} a^{4} + \frac{1}{8} a^{3} - \frac{5}{32} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{256} a^{13} - \frac{1}{256} a^{12} - \frac{3}{256} a^{11} + \frac{3}{256} a^{10} - \frac{1}{256} a^{9} + \frac{1}{256} a^{8} + \frac{15}{256} a^{7} - \frac{7}{256} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} - \frac{3}{64} a^{3} + \frac{9}{64} a^{2} + \frac{1}{8} a - \frac{7}{16}$, $\frac{1}{256} a^{14} - \frac{1}{128} a^{10} + \frac{1}{64} a^{8} + \frac{1}{32} a^{7} - \frac{3}{256} a^{6} + \frac{3}{16} a^{5} + \frac{3}{64} a^{4} + \frac{7}{32} a^{3} + \frac{25}{64} a^{2} - \frac{3}{16} a - \frac{3}{16}$, $\frac{1}{1732989952} a^{15} - \frac{204131}{433247488} a^{14} - \frac{50251}{27077968} a^{13} - \frac{1710187}{866494976} a^{12} - \frac{1064023}{866494976} a^{11} - \frac{1468281}{866494976} a^{10} - \frac{125779}{433247488} a^{9} + \frac{14624579}{866494976} a^{8} - \frac{105478751}{1732989952} a^{7} + \frac{30132535}{866494976} a^{6} + \frac{87052009}{433247488} a^{5} - \frac{18240139}{216623744} a^{4} - \frac{41727979}{433247488} a^{3} - \frac{8879495}{216623744} a^{2} - \frac{23440885}{108311872} a + \frac{4608655}{54155936}$, $\frac{1}{1732989952} a^{16} - \frac{58159}{108311872} a^{14} - \frac{1301619}{866494976} a^{13} + \frac{1015749}{866494976} a^{12} + \frac{8357931}{866494976} a^{11} - \frac{4946801}{433247488} a^{10} + \frac{11406451}{866494976} a^{9} - \frac{17144215}{1732989952} a^{8} - \frac{17319803}{866494976} a^{7} - \frac{6365581}{433247488} a^{6} - \frac{20257049}{216623744} a^{5} - \frac{108011059}{433247488} a^{4} + \frac{51752319}{216623744} a^{3} + \frac{28066249}{108311872} a^{2} - \frac{20990275}{54155936} a - \frac{3873165}{13538984}$, $\frac{1}{562918176691859681007075188944409227989076230749470069067124330819584} a^{17} + \frac{18050898557162777601967591300723304021516548858400978351621}{281459088345929840503537594472204613994538115374735034533562165409792} a^{16} - \frac{651326579213532205174395202885257998167753193076363830321}{281459088345929840503537594472204613994538115374735034533562165409792} a^{15} - \frac{176830346374904001467871383365814111718833387058260426213136761027}{281459088345929840503537594472204613994538115374735034533562165409792} a^{14} - \frac{390258047714208750552570628745466945305029545713174921195854330041}{281459088345929840503537594472204613994538115374735034533562165409792} a^{13} + \frac{741526540213788009402649433724296430822131374587642415646829807187}{281459088345929840503537594472204613994538115374735034533562165409792} a^{12} - \frac{709793594686355296329193252861800207236957032248096098951378842891}{140729544172964920251768797236102306997269057687367517266781082704896} a^{11} + \frac{641115924055412635701402431578514766505971735625531240798399189705}{281459088345929840503537594472204613994538115374735034533562165409792} a^{10} + \frac{2773090331928618284309063849870238204298879161412063095807917561213}{562918176691859681007075188944409227989076230749470069067124330819584} a^{9} + \frac{68584020404499473380726518631246520336093557601499780454938510199}{70364772086482460125884398618051153498634528843683758633390541352448} a^{8} - \frac{9163144285441105636096784096201354522905963749313054775317604594625}{281459088345929840503537594472204613994538115374735034533562165409792} a^{7} + \frac{465161089736814348698483453696754330462026974362356161663628359143}{140729544172964920251768797236102306997269057687367517266781082704896} a^{6} - \frac{33604645361568216115573510377673135996686357773184515279101236175289}{140729544172964920251768797236102306997269057687367517266781082704896} a^{5} - \frac{4298250985382799647722296480197292057819822110111279561610461992819}{35182386043241230062942199309025576749317264421841879316695270676224} a^{4} - \frac{24840435096957833700736432270918093170465980947543779760510077540989}{70364772086482460125884398618051153498634528843683758633390541352448} a^{3} - \frac{5899598130856439644227704100603604365802930817350563539191654465283}{35182386043241230062942199309025576749317264421841879316695270676224} a^{2} + \frac{7583016708016271108944680642886286544965651188087640684423808048119}{17591193021620615031471099654512788374658632210920939658347635338112} a - \frac{48752900224664918496548362057756871182613378621364923793833468321}{8795596510810307515735549827256394187329316105460469829173817669056}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{12}\times C_{36}\times C_{252}$, which has order $111476736$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10681224266.072006 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.1432809.2, 3.3.29241.1, 3.3.3969.1, 3.3.17689.2, 6.0.2759153551366464.5, 6.0.56309256150336.3, 6.0.21171979584.2, 6.0.3784847121216.2, 9.9.2941473244627851129.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |