Normalized defining polynomial
\( x^{18} - 30 x^{16} - 456 x^{15} + 2034 x^{14} + 2706 x^{13} - 7532 x^{12} - 1038168 x^{11} + 2658099 x^{10} + 19740598 x^{9} + 216555534 x^{8} + 37355694 x^{7} + 4501586641 x^{6} + 13683356496 x^{5} + 109092265428 x^{4} - 82064768620 x^{3} + 347083985700 x^{2} - 148747023000 x + 250641775000 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21005238210476463669563930923405113491534905344=-\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $374.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(1223,·)$, $\chi_{4788}(457,·)$, $\chi_{4788}(3659,·)$, $\chi_{4788}(1679,·)$, $\chi_{4788}(1873,·)$, $\chi_{4788}(4115,·)$, $\chi_{4788}(2965,·)$, $\chi_{4788}(1559,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(3697,·)$, $\chi_{4788}(2857,·)$, $\chi_{4788}(3503,·)$, $\chi_{4788}(3313,·)$, $\chi_{4788}(1033,·)$, $\chi_{4788}(4153,·)$, $\chi_{4788}(1151,·)$, $\chi_{4788}(3839,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{10} a^{8} - \frac{1}{10} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{50} a^{10} + \frac{3}{50} a^{6} - \frac{1}{2} a^{4} - \frac{2}{25} a^{2}$, $\frac{1}{50} a^{11} + \frac{3}{50} a^{7} - \frac{1}{10} a^{5} - \frac{2}{25} a^{3} - \frac{2}{5} a$, $\frac{1}{550} a^{12} - \frac{2}{275} a^{11} - \frac{1}{55} a^{9} - \frac{1}{25} a^{8} - \frac{1}{275} a^{7} - \frac{1}{22} a^{6} + \frac{1}{11} a^{5} + \frac{271}{550} a^{4} + \frac{128}{275} a^{3} + \frac{1}{22} a^{2} - \frac{24}{55} a + \frac{3}{11}$, $\frac{1}{2750} a^{13} - \frac{1}{2750} a^{12} - \frac{6}{1375} a^{11} - \frac{1}{275} a^{10} + \frac{29}{1375} a^{9} + \frac{21}{1375} a^{8} + \frac{79}{2750} a^{7} + \frac{39}{550} a^{6} + \frac{91}{2750} a^{5} + \frac{409}{2750} a^{4} - \frac{417}{2750} a^{3} - \frac{17}{50} a^{2} - \frac{7}{55} a + \frac{4}{11}$, $\frac{1}{277750} a^{14} + \frac{19}{277750} a^{13} - \frac{177}{277750} a^{12} - \frac{7}{1010} a^{11} - \frac{967}{277750} a^{10} - \frac{13573}{277750} a^{9} - \frac{5233}{138875} a^{8} - \frac{446}{5555} a^{7} + \frac{6791}{277750} a^{6} + \frac{13129}{277750} a^{5} - \frac{22916}{138875} a^{4} - \frac{1523}{5555} a^{3} + \frac{1642}{5555} a^{2} - \frac{382}{1111} a + \frac{455}{1111}$, $\frac{1}{518003750} a^{15} + \frac{631}{518003750} a^{14} - \frac{42906}{259001875} a^{13} + \frac{201567}{259001875} a^{12} + \frac{3589749}{518003750} a^{11} + \frac{1486274}{259001875} a^{10} + \frac{365189}{47091250} a^{9} + \frac{7025836}{259001875} a^{8} - \frac{23954903}{259001875} a^{7} + \frac{15445871}{518003750} a^{6} + \frac{15485429}{259001875} a^{5} - \frac{97959428}{259001875} a^{4} + \frac{87675328}{259001875} a^{3} + \frac{292663}{4144030} a^{2} + \frac{1080908}{10360075} a + \frac{17817}{414403}$, $\frac{1}{1036007500} a^{16} - \frac{469}{518003750} a^{14} - \frac{31891}{259001875} a^{13} - \frac{12092}{51800375} a^{12} + \frac{3971587}{518003750} a^{11} - \frac{286476}{259001875} a^{10} + \frac{9411597}{259001875} a^{9} - \frac{3259493}{1036007500} a^{8} + \frac{1687271}{518003750} a^{7} - \frac{20382902}{259001875} a^{6} - \frac{1911937}{518003750} a^{5} - \frac{240197393}{1036007500} a^{4} - \frac{80151629}{259001875} a^{3} - \frac{7506839}{20720150} a^{2} - \frac{286549}{941825} a - \frac{106272}{414403}$, $\frac{1}{17140560628872487095435395607677483019648084342574126685087500} a^{17} - \frac{1567094952914358116314493831855074301767160165755039}{4285140157218121773858848901919370754912021085643531671271875} a^{16} + \frac{2327497034740560534204455034254662291143040911299609}{4285140157218121773858848901919370754912021085643531671271875} a^{15} + \frac{173889550535704585945189591468451976569364817693847562}{4285140157218121773858848901919370754912021085643531671271875} a^{14} - \frac{438181220006421130575508545058121953113607810484123067606}{4285140157218121773858848901919370754912021085643531671271875} a^{13} + \frac{746285645131339527536705226314017160867419788189023111602}{857028031443624354771769780383874150982404217128706334254375} a^{12} - \frac{34187617961232250830404002586566000311241253547831174741798}{4285140157218121773858848901919370754912021085643531671271875} a^{11} - \frac{18042454394184090831773620756468212227937267883932639855283}{8570280314436243547717697803838741509824042171287063342543750} a^{10} - \frac{124306228643300069224280131859400109010099095553453159934203}{3428112125774497419087079121535496603929616868514825337017500} a^{9} - \frac{201594955593375431578686047689228765840983289571277186907073}{4285140157218121773858848901919370754912021085643531671271875} a^{8} + \frac{823728866393547903991386142835567504047096951887873581245493}{8570280314436243547717697803838741509824042171287063342543750} a^{7} + \frac{229920689934313590387309868648685531964914753468513748887009}{8570280314436243547717697803838741509824042171287063342543750} a^{6} - \frac{39920473468346903064319886251466750248123485202511849422487}{17140560628872487095435395607677483019648084342574126685087500} a^{5} - \frac{307963032500163397789523427867910454606576891491449376254511}{779116392221476686156154345803521955438549288298823940231250} a^{4} - \frac{87477612449181897228588070590324422407872553404146571927143}{1714056062887248709543539560767748301964808434257412668508750} a^{3} - \frac{82483604826476818942409977880355483602566971744178684093233}{171405606288724870954353956076774830196480843425741266850875} a^{2} - \frac{7198623214456060099996999776231699652382214849009737890389}{34281121257744974190870791215354966039296168685148253370175} a - \frac{194752920236976663351625643516659564026645903505418155482}{1371244850309798967634831648614198641571846747405930134807}$
Class group and class number
$C_{2}\times C_{6}\times C_{36}\times C_{435708}$, which has order $188225856$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 926168257.1203558 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.1432809.4, 3.3.3969.2, 3.3.17689.2, 3.3.29241.2, 6.0.2759153551366464.3, 6.0.21171979584.1, 6.0.3784847121216.2, 6.0.56309256150336.2, 9.9.2941473244627851129.6 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.1.0.1}{1} }^{18}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |