Normalized defining polynomial
\( x^{18} - 6 x^{17} + 105 x^{16} - 470 x^{15} + 5088 x^{14} - 19992 x^{13} + 148828 x^{12} - 475356 x^{11} + 2514777 x^{10} - 6643036 x^{9} + 25989579 x^{8} - 49796760 x^{7} + 77021785 x^{6} + 63019572 x^{5} + 3867087 x^{4} - 2732121798 x^{3} + 16365722709 x^{2} - 30542807610 x + 27422121601 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-21005238210476463669563930923405113491534905344=-\,2^{18}\cdot 3^{27}\cdot 7^{15}\cdot 19^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $374.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(2819,·)$, $\chi_{4788}(961,·)$, $\chi_{4788}(457,·)$, $\chi_{4788}(1559,·)$, $\chi_{4788}(311,·)$, $\chi_{4788}(3469,·)$, $\chi_{4788}(2063,·)$, $\chi_{4788}(2965,·)$, $\chi_{4788}(2519,·)$, $\chi_{4788}(2015,·)$, $\chi_{4788}(4225,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(1717,·)$, $\chi_{4788}(3275,·)$, $\chi_{4788}(4343,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(3839,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{22} a^{8} - \frac{2}{11} a^{7} + \frac{3}{11} a^{6} - \frac{3}{11} a^{5} - \frac{3}{22} a^{4} + \frac{3}{11} a^{3} - \frac{5}{22} a^{2} + \frac{2}{11} a + \frac{1}{22}$, $\frac{1}{110} a^{9} + \frac{1}{55} a^{8} + \frac{24}{55} a^{7} - \frac{18}{55} a^{6} + \frac{49}{110} a^{5} + \frac{27}{55} a^{4} + \frac{31}{110} a^{3} - \frac{24}{55} a^{2} + \frac{5}{22} a + \frac{3}{55}$, $\frac{1}{110} a^{10} - \frac{1}{110} a^{8} + \frac{24}{55} a^{7} - \frac{39}{110} a^{6} + \frac{3}{55} a^{5} - \frac{26}{55} a^{4} - \frac{5}{11} a^{3} + \frac{8}{55} a^{2} - \frac{2}{55} a + \frac{53}{110}$, $\frac{1}{110} a^{11} - \frac{1}{10} a^{7} - \frac{3}{10} a^{5} + \frac{2}{5} a^{4} - \frac{3}{10} a^{3} - \frac{1}{5} a^{2} - \frac{6}{55} a - \frac{2}{5}$, $\frac{1}{110} a^{12} - \frac{1}{110} a^{8} - \frac{4}{11} a^{7} + \frac{27}{110} a^{6} - \frac{8}{55} a^{5} + \frac{47}{110} a^{4} + \frac{19}{55} a^{3} + \frac{24}{55} a^{2} - \frac{2}{55} a + \frac{1}{11}$, $\frac{1}{110} a^{13} + \frac{1}{55} a^{8} + \frac{5}{22} a^{7} - \frac{16}{55} a^{6} - \frac{17}{55} a^{5} - \frac{14}{55} a^{4} - \frac{1}{10} a^{3} - \frac{16}{55} a^{2} - \frac{5}{22} a + \frac{23}{55}$, $\frac{1}{1210} a^{14} + \frac{1}{242} a^{13} + \frac{1}{605} a^{12} - \frac{1}{242} a^{11} - \frac{2}{605} a^{10} + \frac{2}{605} a^{9} + \frac{3}{605} a^{8} - \frac{54}{605} a^{7} + \frac{252}{605} a^{6} + \frac{109}{1210} a^{5} - \frac{93}{605} a^{4} - \frac{117}{605} a^{3} - \frac{147}{605} a^{2} + \frac{229}{1210} a + \frac{91}{242}$, $\frac{1}{1210} a^{15} - \frac{1}{1210} a^{13} - \frac{2}{605} a^{12} - \frac{1}{1210} a^{11} + \frac{1}{605} a^{10} - \frac{3}{1210} a^{9} - \frac{3}{605} a^{8} - \frac{281}{605} a^{7} + \frac{197}{605} a^{6} + \frac{179}{605} a^{5} - \frac{4}{605} a^{4} - \frac{81}{1210} a^{3} - \frac{179}{605} a^{2} - \frac{437}{1210} a - \frac{2}{121}$, $\frac{1}{1217255145031292392665860} a^{16} + \frac{100521667535401684234}{304313786257823098166465} a^{15} - \frac{45238106234780260589}{121725514503129239266586} a^{14} - \frac{189424178954810067163}{304313786257823098166465} a^{13} + \frac{71518669285610586983}{55329779319604199666630} a^{12} + \frac{130278391485267825291}{608627572515646196332930} a^{11} + \frac{82069917093475433834}{27664889659802099833315} a^{10} - \frac{57972926428482504011}{121725514503129239266586} a^{9} + \frac{16816093353012547148299}{1217255145031292392665860} a^{8} + \frac{228484740240029121967163}{608627572515646196332930} a^{7} - \frac{117019699279823134793254}{304313786257823098166465} a^{6} - \frac{113104307167415924321266}{304313786257823098166465} a^{5} - \frac{514591144358121699809879}{1217255145031292392665860} a^{4} - \frac{29057797291433900822858}{304313786257823098166465} a^{3} + \frac{102142839454731278549189}{304313786257823098166465} a^{2} - \frac{4119255393658517698499}{11065955863920839933326} a - \frac{404533084389809055225973}{1217255145031292392665860}$, $\frac{1}{2515938439875943377868813366007934079940} a^{17} + \frac{34186561758971}{2515938439875943377868813366007934079940} a^{16} + \frac{11662786626728794909572449989619379}{628984609968985844467203341501983519985} a^{15} + \frac{1662633763318698883347106797565005}{251593843987594337786881336600793407994} a^{14} + \frac{814703867480981219212203237474594831}{628984609968985844467203341501983519985} a^{13} - \frac{2496050757725777614825087554777767509}{628984609968985844467203341501983519985} a^{12} - \frac{2264563200191120479278291433304966378}{628984609968985844467203341501983519985} a^{11} + \frac{2539448035044794948025813366469446001}{628984609968985844467203341501983519985} a^{10} + \frac{9378047921977296774524343285179751949}{2515938439875943377868813366007934079940} a^{9} - \frac{25725894743288864631502062919741894567}{2515938439875943377868813366007934079940} a^{8} - \frac{290763562407887201552037373636057519591}{1257969219937971688934406683003967039970} a^{7} - \frac{510587908551438667015512828180820614133}{1257969219937971688934406683003967039970} a^{6} + \frac{86856653759351823601317185475944506199}{503187687975188675573762673201586815988} a^{5} + \frac{499973285884884888750609085452703174687}{2515938439875943377868813366007934079940} a^{4} + \frac{46988531391341202699868094915992927172}{125796921993797168893440668300396703997} a^{3} - \frac{15172312298838346497516744649537080127}{1257969219937971688934406683003967039970} a^{2} + \frac{223975651185779064500533702903356159049}{2515938439875943377868813366007934079940} a + \frac{400797131695865954939729852025890213727}{2515938439875943377868813366007934079940}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{4}\times C_{12}\times C_{180}\times C_{2340}$, which has order $323481600$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110172188.8644179 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.1432809.2, 3.3.1432809.3, 3.3.361.1, 3.3.3969.2, 6.0.2759153551366464.5, 6.0.2759153551366464.2, 6.0.77241777984.6, 6.0.21171979584.1, 9.9.2941473244627851129.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $19$ | 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 19.9.6.2 | $x^{9} + 228 x^{6} + 16967 x^{3} + 438976$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |