Normalized defining polynomial
\( x^{18} - 3 x^{17} + 21 x^{16} - 54 x^{15} + 195 x^{14} - 471 x^{13} + 1077 x^{12} - 2142 x^{11} + 3306 x^{10} - 5050 x^{9} + 6096 x^{8} - 8646 x^{7} + 9585 x^{6} - 9465 x^{5} + 9138 x^{4} - 1689 x^{3} + 19827 x^{2} + 11898 x + 10104 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2083629921519675807054655488=-\,2^{12}\cdot 3^{24}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{4283395454547680616343213947677688892} a^{17} + \frac{287577816960569872341330591611433457}{2141697727273840308171606973838844446} a^{16} - \frac{2072969534805385100170636023189394805}{4283395454547680616343213947677688892} a^{15} - \frac{1848185468169169335882860563273847443}{4283395454547680616343213947677688892} a^{14} - \frac{379892419790546185574897332605385153}{1070848863636920154085803486919422223} a^{13} + \frac{2051136251543440271563384729359369657}{4283395454547680616343213947677688892} a^{12} - \frac{4883710712915441527011036010421119}{36299961479217632341891643624387194} a^{11} - \frac{351981023625352852251647678756411075}{1070848863636920154085803486919422223} a^{10} + \frac{52524974667430168371019947875416797}{2141697727273840308171606973838844446} a^{9} - \frac{138238114359975967666244005803431669}{1070848863636920154085803486919422223} a^{8} - \frac{504056960636562406903950602593764982}{1070848863636920154085803486919422223} a^{7} + \frac{660148161246374462445380804607107605}{2141697727273840308171606973838844446} a^{6} - \frac{2055215344740168193259524310908841765}{4283395454547680616343213947677688892} a^{5} - \frac{272593066021105788331347223210432185}{2141697727273840308171606973838844446} a^{4} + \frac{372156150133519975736355881596310240}{1070848863636920154085803486919422223} a^{3} - \frac{946564190310012873898229837002289837}{4283395454547680616343213947677688892} a^{2} - \frac{11319194468119859468130131613509549}{36299961479217632341891643624387194} a - \frac{310111471409599065288292131026603111}{1070848863636920154085803486919422223}$
Class group and class number
$C_{14}$, which has order $14$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1089567.33033 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3:S_3:S_4$ (as 18T155):
| A solvable group of order 432 |
| The 20 conjugacy class representatives for $C_3:S_3:S_4$ |
| Character table for $C_3:S_3:S_4$ |
Intermediate fields
| 3.3.621.1, 6.0.141915888.3, 9.3.6466042647.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.12.12.26 | $x^{12} - 162 x^{10} + 26423 x^{8} + 125508 x^{6} - 64481 x^{4} - 122498 x^{2} - 86071$ | $2$ | $6$ | $12$ | $C_6\times C_2$ | $[2]^{6}$ | |
| $3$ | 3.9.12.22 | $x^{9} + 6 x^{4} + 6 x^{3} + 3$ | $9$ | $1$ | $12$ | $C_3^2 : C_6$ | $[3/2, 3/2]_{2}^{3}$ |
| 3.9.12.22 | $x^{9} + 6 x^{4} + 6 x^{3} + 3$ | $9$ | $1$ | $12$ | $C_3^2 : C_6$ | $[3/2, 3/2]_{2}^{3}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.3.2 | $x^{4} - 23$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 23.8.6.2 | $x^{8} - 1633 x^{4} + 1270129$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |