Normalized defining polynomial
\( x^{18} - 3 x^{17} + 27 x^{16} - 81 x^{15} + 294 x^{14} - 742 x^{13} + 1709 x^{12} - 2898 x^{11} + 4197 x^{10} - 5418 x^{9} + 6890 x^{8} - 8162 x^{7} + 9045 x^{6} - 8995 x^{5} + 7994 x^{4} - 5616 x^{3} + 3422 x^{2} - 1664 x + 533 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-206215221475202976832466944=-\,2^{12}\cdot 7^{15}\cdot 13^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} + \frac{2}{13} a^{13} - \frac{5}{13} a^{11} - \frac{6}{13} a^{10} + \frac{5}{13} a^{9} - \frac{3}{13} a^{8} - \frac{5}{13} a^{7} - \frac{6}{13} a^{6} + \frac{5}{13} a^{5} - \frac{2}{13} a^{3} + \frac{1}{13} a^{2}$, $\frac{1}{299} a^{15} + \frac{10}{299} a^{14} - \frac{62}{299} a^{13} + \frac{21}{299} a^{12} + \frac{45}{299} a^{11} + \frac{48}{299} a^{10} + \frac{128}{299} a^{9} - \frac{55}{299} a^{8} - \frac{2}{13} a^{7} - \frac{134}{299} a^{6} + \frac{105}{299} a^{5} - \frac{106}{299} a^{4} - \frac{15}{299} a^{3} - \frac{5}{299} a^{2} + \frac{5}{23} a - \frac{4}{23}$, $\frac{1}{3887} a^{16} + \frac{6}{3887} a^{15} - \frac{79}{3887} a^{14} + \frac{614}{3887} a^{13} - \frac{49}{299} a^{12} + \frac{96}{299} a^{11} + \frac{1293}{3887} a^{10} + \frac{1043}{3887} a^{9} + \frac{1899}{3887} a^{8} - \frac{5}{299} a^{7} - \frac{95}{3887} a^{6} + \frac{1383}{3887} a^{5} - \frac{488}{3887} a^{4} - \frac{1785}{3887} a^{3} + \frac{1902}{3887} a^{2} + \frac{7}{23} a + \frac{85}{299}$, $\frac{1}{2756658052158390888287117} a^{17} + \frac{71752212054795046782}{2756658052158390888287117} a^{16} - \frac{2003710825491272518421}{2756658052158390888287117} a^{15} - \frac{65950777358299667264598}{2756658052158390888287117} a^{14} + \frac{970612244689404011386877}{2756658052158390888287117} a^{13} - \frac{83969675792269001008035}{212050619396799299099009} a^{12} + \frac{419804089303224302019089}{2756658052158390888287117} a^{11} - \frac{526997114349401056654401}{2756658052158390888287117} a^{10} - \frac{777565836898672088391250}{2756658052158390888287117} a^{9} + \frac{734483292328018676563849}{2756658052158390888287117} a^{8} + \frac{413172601333034620218670}{2756658052158390888287117} a^{7} - \frac{1270433280484686021318159}{2756658052158390888287117} a^{6} + \frac{882601288685294764303599}{2756658052158390888287117} a^{5} + \frac{566511150490487397688820}{2756658052158390888287117} a^{4} - \frac{60934577092370916703155}{212050619396799299099009} a^{3} - \frac{1169219265542353416743127}{2756658052158390888287117} a^{2} + \frac{15507499844914936818434}{212050619396799299099009} a - \frac{2300494090525028866614}{5171966326751202417049}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}$, which has order $8$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140111.524592 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-91}) \), 3.1.364.1 x3, \(\Q(\zeta_{7})^+\), 6.0.12057136.1, 6.0.590799664.2 x2, 6.0.36924979.1, 9.3.115796734144.2 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.590799664.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |