Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 38 x^{15} + 72 x^{14} - 72 x^{13} + 82 x^{12} + 540 x^{11} - 123 x^{10} - 880 x^{9} + 17883 x^{8} - 34212 x^{7} + 79951 x^{6} - 92796 x^{5} + 178851 x^{4} - 124326 x^{3} + 112827 x^{2} - 54930 x + 114211 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-206148603259625688967552734375=-\,3^{27}\cdot 5^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.52$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(315=3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{315}(256,·)$, $\chi_{315}(1,·)$, $\chi_{315}(134,·)$, $\chi_{315}(74,·)$, $\chi_{315}(16,·)$, $\chi_{315}(211,·)$, $\chi_{315}(149,·)$, $\chi_{315}(151,·)$, $\chi_{315}(284,·)$, $\chi_{315}(29,·)$, $\chi_{315}(226,·)$, $\chi_{315}(106,·)$, $\chi_{315}(44,·)$, $\chi_{315}(46,·)$, $\chi_{315}(239,·)$, $\chi_{315}(179,·)$, $\chi_{315}(121,·)$, $\chi_{315}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a + \frac{3}{8}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{1}{8} a^{10} + \frac{1}{16} a^{9} - \frac{1}{4} a^{7} + \frac{1}{16} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{3}{16} a^{3} + \frac{7}{16} a^{2} + \frac{1}{4} a - \frac{1}{16}$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{11} + \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{3}{16} a^{7} + \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{16} a^{4} + \frac{3}{8} a^{3} + \frac{3}{16} a^{2} + \frac{1}{16} a - \frac{7}{16}$, $\frac{1}{272} a^{15} - \frac{11}{272} a^{12} - \frac{11}{272} a^{11} - \frac{9}{272} a^{10} - \frac{1}{68} a^{9} + \frac{1}{16} a^{8} + \frac{7}{272} a^{7} + \frac{5}{34} a^{6} + \frac{7}{272} a^{5} - \frac{11}{136} a^{4} - \frac{117}{272} a^{3} + \frac{41}{272} a^{2} - \frac{107}{272} a + \frac{1}{34}$, $\frac{1}{2176} a^{16} - \frac{1}{32} a^{14} - \frac{31}{1088} a^{13} + \frac{5}{272} a^{12} - \frac{13}{1088} a^{11} + \frac{15}{1088} a^{10} - \frac{3}{64} a^{9} - \frac{61}{2176} a^{8} - \frac{29}{272} a^{7} + \frac{5}{68} a^{6} - \frac{99}{544} a^{5} + \frac{359}{2176} a^{4} - \frac{515}{1088} a^{3} - \frac{3}{34} a^{2} + \frac{15}{34} a + \frac{43}{128}$, $\frac{1}{272204082615337736676706436313708544} a^{17} - \frac{24997155216530990721609933286203}{272204082615337736676706436313708544} a^{16} + \frac{124674184578249323924307947333107}{68051020653834434169176609078427136} a^{15} - \frac{2568271531554709675423402865598897}{136102041307668868338353218156854272} a^{14} - \frac{2586101773245230957702647264514295}{136102041307668868338353218156854272} a^{13} - \frac{3906971543333067002116806951365185}{136102041307668868338353218156854272} a^{12} + \frac{2921857908337161923836599874388399}{68051020653834434169176609078427136} a^{11} - \frac{233421556835817051605004752833341}{17012755163458608542294152269606784} a^{10} + \frac{212999423145050542891674523882005}{272204082615337736676706436313708544} a^{9} - \frac{9029232050204945013010076817533897}{272204082615337736676706436313708544} a^{8} + \frac{6225799801687172254633614949580159}{34025510326917217084588304539213568} a^{7} - \frac{10734883787076239354178945328716895}{68051020653834434169176609078427136} a^{6} - \frac{10524736187396765067720924334850309}{272204082615337736676706436313708544} a^{5} - \frac{27911369758688793834684381433230451}{272204082615337736676706436313708544} a^{4} + \frac{42455508170489972425659722465966777}{136102041307668868338353218156854272} a^{3} + \frac{1328544961985286320444926523950241}{4253188790864652135573538067401696} a^{2} + \frac{2481313398993795811985643882710475}{16012004859725749216276849194924032} a + \frac{379459917334113752787217133356795}{1503889959200760976114400200628224}$
Class group and class number
$C_{2}\times C_{2}\times C_{74}$, which has order $296$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\zeta_{9})^+\), \(\Q(\zeta_{7})^+\), 3.3.3969.1, 3.3.3969.2, 6.0.2460375.1, 6.0.8103375.1, 6.0.5907360375.1, 6.0.5907360375.2, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{6}$ | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.2 | $x^{6} - 25 x^{2} + 250$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7 | Data not computed | ||||||