Normalized defining polynomial
\( x^{18} - 3 x^{17} + 9 x^{16} - 57 x^{15} + 143 x^{14} - 3 x^{13} + 1674 x^{12} + 1233 x^{11} + 5724 x^{10} + 2007 x^{9} + 10875 x^{8} + 1305 x^{7} + 10340 x^{6} + 858 x^{5} + 5358 x^{4} + 381 x^{3} + 1558 x^{2} + 165 x + 183 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-204985922317940382893914042368=-\,2^{12}\cdot 3^{9}\cdot 7^{6}\cdot 43^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{8} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} - \frac{1}{9} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{364692856776462364811552581743} a^{17} - \frac{13575160268273582354492872753}{364692856776462364811552581743} a^{16} + \frac{20305242015449263631035813969}{364692856776462364811552581743} a^{15} + \frac{31858866107199530139581797610}{364692856776462364811552581743} a^{14} + \frac{10645213317464456761949034571}{121564285592154121603850860581} a^{13} - \frac{12868637883517823621042284504}{121564285592154121603850860581} a^{12} + \frac{1730512843392356132330321477}{40521428530718040534616953527} a^{11} - \frac{12186118551869477245289098411}{121564285592154121603850860581} a^{10} - \frac{39600506003417403538792949330}{121564285592154121603850860581} a^{9} + \frac{12593099158302900300328527585}{40521428530718040534616953527} a^{8} - \frac{12853480360369955907101277946}{40521428530718040534616953527} a^{7} + \frac{53679779494405850342329706033}{121564285592154121603850860581} a^{6} + \frac{148721160306842897027737448342}{364692856776462364811552581743} a^{5} + \frac{57881059049887005717205585132}{364692856776462364811552581743} a^{4} - \frac{83142649488269327876039637475}{364692856776462364811552581743} a^{3} - \frac{11607697022115200880885589463}{364692856776462364811552581743} a^{2} + \frac{16931510097820969058138161169}{40521428530718040534616953527} a - \frac{32745803918666298389843594819}{121564285592154121603850860581}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{149131692413739326}{37703520132935729883} a^{17} + \frac{473976989037599438}{37703520132935729883} a^{16} - \frac{1461017701596462538}{37703520132935729883} a^{15} + \frac{2960482522889615091}{12567840044311909961} a^{14} - \frac{7736448795665348035}{12567840044311909961} a^{13} + \frac{2169783114008740096}{12567840044311909961} a^{12} - \frac{85392600558717187811}{12567840044311909961} a^{11} - \frac{46351121725856008764}{12567840044311909961} a^{10} - \frac{292530515696235301892}{12567840044311909961} a^{9} - \frac{51723144029576407028}{12567840044311909961} a^{8} - \frac{557309903511451615850}{12567840044311909961} a^{7} + \frac{66395116999951970188}{12567840044311909961} a^{6} - \frac{1629414233231806567579}{37703520132935729883} a^{5} + \frac{355354514741260369567}{37703520132935729883} a^{4} - \frac{721259331143792675231}{37703520132935729883} a^{3} + \frac{56479911217287596864}{12567840044311909961} a^{2} - \frac{45730901114817469945}{12567840044311909961} a + \frac{17103887341629606118}{12567840044311909961} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55890127.22994664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.172.1, 6.0.2446227.1, 6.0.798768.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.4.2 | $x^{6} - 7 x^{3} + 147$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.0.1 | $x^{6} + 3 x^{2} - x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $43$ | 43.3.2.2 | $x^{3} + 387$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.6.3.2 | $x^{6} - 1849 x^{2} + 795070$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 43.6.5.4 | $x^{6} + 387$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |