Normalized defining polynomial
\( x^{18} - 6 x^{17} + 17 x^{16} - 60 x^{15} + 155 x^{14} - 142 x^{13} + 129 x^{12} - 470 x^{11} + 695 x^{10} - 1136 x^{9} + 637 x^{8} + 2310 x^{7} - 1637 x^{6} - 4340 x^{5} - 1276 x^{4} + 8536 x^{3} + 13300 x^{2} + 7392 x + 1432 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2037576378429183552150044672=-\,2^{27}\cdot 19^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{74} a^{14} - \frac{16}{37} a^{13} - \frac{9}{74} a^{12} + \frac{9}{37} a^{11} + \frac{5}{74} a^{10} - \frac{2}{37} a^{9} + \frac{11}{74} a^{8} - \frac{12}{37} a^{7} - \frac{5}{74} a^{6} - \frac{11}{37} a^{5} + \frac{29}{74} a^{4} - \frac{5}{37} a^{3} + \frac{1}{74} a^{2} + \frac{13}{37} a + \frac{15}{37}$, $\frac{1}{222} a^{15} + \frac{1}{222} a^{14} + \frac{15}{74} a^{13} + \frac{17}{222} a^{12} + \frac{27}{74} a^{11} - \frac{61}{222} a^{10} + \frac{9}{74} a^{9} + \frac{43}{222} a^{8} + \frac{91}{222} a^{7} + \frac{35}{222} a^{6} - \frac{31}{222} a^{5} - \frac{89}{222} a^{4} - \frac{11}{74} a^{3} + \frac{59}{222} a^{2} + \frac{14}{111}$, $\frac{1}{4884} a^{16} + \frac{1}{814} a^{15} - \frac{31}{4884} a^{14} - \frac{13}{1221} a^{13} - \frac{1325}{4884} a^{12} + \frac{775}{2442} a^{11} - \frac{1571}{4884} a^{10} + \frac{695}{2442} a^{9} - \frac{639}{1628} a^{8} - \frac{446}{1221} a^{7} - \frac{409}{1628} a^{6} - \frac{785}{2442} a^{5} - \frac{1717}{4884} a^{4} + \frac{65}{1221} a^{3} - \frac{224}{1221} a^{2} + \frac{424}{1221} a + \frac{38}{1221}$, $\frac{1}{52711633148971909754678916} a^{17} - \frac{73291838749202575033}{52711633148971909754678916} a^{16} + \frac{9097525611749692389731}{52711633148971909754678916} a^{15} + \frac{93974321178573358885789}{17570544382990636584892972} a^{14} + \frac{21004392260699981983557299}{52711633148971909754678916} a^{13} + \frac{10877242848619482481246567}{52711633148971909754678916} a^{12} + \frac{14824075074752753092484279}{52711633148971909754678916} a^{11} - \frac{3839988775300464527204957}{17570544382990636584892972} a^{10} - \frac{20888937417821735355412351}{52711633148971909754678916} a^{9} - \frac{9492104917984622817221387}{52711633148971909754678916} a^{8} - \frac{3255866025096391947374659}{52711633148971909754678916} a^{7} + \frac{23087309042173206229831385}{52711633148971909754678916} a^{6} + \frac{8298729587890497933261455}{17570544382990636584892972} a^{5} + \frac{4210542949831080641599339}{17570544382990636584892972} a^{4} - \frac{5087722175274480513003853}{13177908287242977438669729} a^{3} + \frac{3546932638473251838546609}{8785272191495318292446486} a^{2} - \frac{165724121440135428524359}{1197991662476634312606339} a - \frac{262433537119934307430760}{13177908287242977438669729}$
Class group and class number
$C_{6}$, which has order $6$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 399403.722263 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-38}) \), 3.1.152.1 x3, 3.3.361.1, 6.0.3511808.1, 6.0.1267762688.3 x2, 6.0.1267762688.1, 9.3.457662330368.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1267762688.3 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| 2.6.9.3 | $x^{6} - 4 x^{4} + 4 x^{2} + 24$ | $2$ | $3$ | $9$ | $C_6$ | $[3]^{3}$ | |
| $19$ | 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19.6.5.2 | $x^{6} - 19$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |