Normalized defining polynomial
\( x^{18} - 4 x^{15} - 15 x^{12} + 4 x^{9} + 435 x^{6} - 136 x^{3} + 343 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-203521098186458046148608=-\,2^{12}\cdot 3^{21}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} + \frac{1}{6} a^{6} + \frac{1}{6} a^{3} + \frac{1}{6}$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{7} + \frac{1}{6} a^{4} + \frac{1}{6} a$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{8} + \frac{1}{6} a^{5} + \frac{1}{6} a^{2}$, $\frac{1}{60} a^{12} - \frac{1}{30} a^{9} + \frac{1}{15} a^{6} + \frac{4}{15} a^{3} + \frac{3}{20}$, $\frac{1}{180} a^{13} - \frac{1}{18} a^{11} - \frac{1}{90} a^{10} + \frac{1}{18} a^{9} - \frac{7}{18} a^{8} + \frac{1}{45} a^{7} + \frac{7}{18} a^{6} + \frac{5}{18} a^{5} - \frac{11}{45} a^{4} - \frac{5}{18} a^{3} - \frac{1}{18} a^{2} + \frac{1}{20} a + \frac{1}{18}$, $\frac{1}{180} a^{14} - \frac{1}{180} a^{12} - \frac{1}{90} a^{11} + \frac{1}{18} a^{10} + \frac{1}{90} a^{9} + \frac{1}{45} a^{8} + \frac{7}{18} a^{7} - \frac{1}{45} a^{6} - \frac{11}{45} a^{5} - \frac{5}{18} a^{4} + \frac{11}{45} a^{3} + \frac{1}{20} a^{2} + \frac{1}{18} a - \frac{1}{20}$, $\frac{1}{114300} a^{15} + \frac{139}{114300} a^{12} - \frac{1499}{57150} a^{9} - \frac{1052}{5715} a^{6} + \frac{217}{4572} a^{3} - \frac{28271}{114300}$, $\frac{1}{800100} a^{16} - \frac{377}{266700} a^{13} - \frac{1}{18} a^{11} + \frac{14173}{200025} a^{10} + \frac{1}{18} a^{9} - \frac{7}{18} a^{8} + \frac{37393}{80010} a^{7} + \frac{7}{18} a^{6} + \frac{5}{18} a^{5} + \frac{7897}{53340} a^{4} - \frac{5}{18} a^{3} - \frac{1}{18} a^{2} - \frac{211151}{800100} a + \frac{1}{18}$, $\frac{1}{16802100} a^{17} - \frac{1}{2400300} a^{16} + \frac{1}{342900} a^{15} - \frac{16123}{8401050} a^{14} + \frac{1394}{600075} a^{13} + \frac{139}{342900} a^{12} - \frac{607289}{8401050} a^{11} + \frac{16942}{600075} a^{10} - \frac{1499}{171450} a^{9} + \frac{51617}{1680210} a^{8} + \frac{5773}{24003} a^{7} - \frac{1052}{17145} a^{6} - \frac{609277}{3360420} a^{5} + \frac{123883}{480060} a^{4} + \frac{4789}{13716} a^{3} + \frac{3088157}{8401050} a^{2} - \frac{207797}{1200150} a - \frac{142571}{342900}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{450} a^{15} - \frac{7}{900} a^{12} - \frac{13}{450} a^{9} - \frac{1}{45} a^{6} + \frac{89}{90} a^{3} + \frac{293}{900} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 132908.71058495017 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 36 |
| The 9 conjugacy class representatives for $S_3^2$ |
| Character table for $S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.108.1 x3, 3.1.492.1, 6.0.726192.1, 6.0.34992.1, 9.1.260461832256.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 9 sibling: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $3$ | 3.6.7.4 | $x^{6} + 3 x^{2} + 3$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.12.14.6 | $x^{12} + 3 x^{11} + 3 x^{10} - 6 x^{9} + 3 x^{8} + 9 x^{7} + 9 x^{4} + 9 x^{3} + 9$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 41.4.2.1 | $x^{4} + 943 x^{2} + 242064$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |