Normalized defining polynomial
\( x^{18} + 468 x^{16} + 91260 x^{14} + 9596496 x^{12} + 588128112 x^{10} + 21172612032 x^{8} + 428157265536 x^{6} + 4337177495040 x^{4} + 16914992230656 x^{2} + 7725011394048 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20296288612744454761949989145129188927343689728=-\,2^{27}\cdot 3^{45}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $373.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2808=2^{3}\cdot 3^{3}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2808}(1,·)$, $\chi_{2808}(1733,·)$, $\chi_{2808}(1537,·)$, $\chi_{2808}(841,·)$, $\chi_{2808}(1037,·)$, $\chi_{2808}(2573,·)$, $\chi_{2808}(1873,·)$, $\chi_{2808}(2713,·)$, $\chi_{2808}(601,·)$, $\chi_{2808}(797,·)$, $\chi_{2808}(101,·)$, $\chi_{2808}(1637,·)$, $\chi_{2808}(2473,·)$, $\chi_{2808}(2669,·)$, $\chi_{2808}(1777,·)$, $\chi_{2808}(1973,·)$, $\chi_{2808}(937,·)$, $\chi_{2808}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{104} a^{6}$, $\frac{1}{104} a^{7}$, $\frac{1}{208} a^{8}$, $\frac{1}{314704} a^{9} + \frac{9}{12104} a^{7} + \frac{351}{6052} a^{5} + \frac{531}{3026} a^{3} + \frac{104}{1513} a$, $\frac{1}{2219922016} a^{10} + \frac{1081097}{554980504} a^{8} + \frac{733829}{554980504} a^{6} + \frac{1828235}{21345404} a^{4} - \frac{2364715}{10672702} a^{2} + \frac{966}{3527}$, $\frac{1}{2219922016} a^{11} + \frac{11}{85381616} a^{9} - \frac{1417641}{554980504} a^{7} + \frac{177544}{5336351} a^{5} + \frac{1119010}{5336351} a^{3} + \frac{734996}{5336351} a$, $\frac{1}{57717972416} a^{12} + \frac{736129}{1109961008} a^{8} - \frac{253199}{69372563} a^{6} + \frac{659610}{5336351} a^{4} - \frac{1127653}{5336351} a^{2} - \frac{45}{3527}$, $\frac{1}{57717972416} a^{13} - \frac{39}{42690808} a^{9} + \frac{611661}{138745126} a^{7} + \frac{46095}{21345404} a^{5} + \frac{13615}{119918} a^{3} - \frac{2022043}{5336351} a$, $\frac{1}{115435944832} a^{14} + \frac{1671099}{1109961008} a^{8} - \frac{2387299}{554980504} a^{6} - \frac{2008123}{21345404} a^{4} + \frac{1514897}{10672702} a^{2} - \frac{982}{3527}$, $\frac{1}{115435944832} a^{15} - \frac{699}{1109961008} a^{9} - \frac{271339}{277490252} a^{7} - \frac{1810611}{21345404} a^{5} - \frac{375575}{10672702} a^{3} + \frac{746825}{5336351} a$, $\frac{1}{230871889664} a^{16} + \frac{643595}{1109961008} a^{8} - \frac{383941}{138745126} a^{6} + \frac{2172801}{21345404} a^{4} + \frac{1039925}{5336351} a^{2} + \frac{1577}{3527}$, $\frac{1}{230871889664} a^{17} + \frac{1681}{1109961008} a^{9} - \frac{482697}{138745126} a^{7} + \frac{987729}{21345404} a^{5} - \frac{2586371}{10672702} a^{3} - \frac{336843}{5336351} a$
Class group and class number
$C_{2}\times C_{77852274}$, which has order $155704548$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59652214.53290313 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-78}) \), \(\Q(\zeta_{9})^+\), 6.0.22140698112.9, 9.9.151470380950257681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | $18$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||