Normalized defining polynomial
\( x^{18} + 468 x^{16} + 91260 x^{14} + 9596496 x^{12} + 588128112 x^{10} + 21172612032 x^{8} + 428157265536 x^{6} + 4337177495040 x^{4} + 16914992230656 x^{2} + 3422001643008 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20296288612744454761949989145129188927343689728=-\,2^{27}\cdot 3^{45}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $373.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2808=2^{3}\cdot 3^{3}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2808}(1,·)$, $\chi_{2808}(2785,·)$, $\chi_{2808}(2573,·)$, $\chi_{2808}(913,·)$, $\chi_{2808}(725,·)$, $\chi_{2808}(1849,·)$, $\chi_{2808}(1661,·)$, $\chi_{2808}(2597,·)$, $\chi_{2808}(2401,·)$, $\chi_{2808}(1637,·)$, $\chi_{2808}(529,·)$, $\chi_{2808}(937,·)$, $\chi_{2808}(173,·)$, $\chi_{2808}(701,·)$, $\chi_{2808}(1465,·)$, $\chi_{2808}(2045,·)$, $\chi_{2808}(1873,·)$, $\chi_{2808}(1109,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{104} a^{6}$, $\frac{1}{104} a^{7}$, $\frac{1}{208} a^{8}$, $\frac{1}{209456} a^{9} + \frac{9}{8056} a^{7} + \frac{351}{4028} a^{5} + \frac{35}{2014} a^{3} - \frac{367}{1007} a$, $\frac{1}{1689472096} a^{10} - \frac{1645321}{844736048} a^{8} - \frac{549287}{422368024} a^{6} - \frac{1379555}{16244924} a^{4} + \frac{1864597}{8122462} a^{2} - \frac{1056}{4033}$, $\frac{1}{1689472096} a^{11} + \frac{11}{64979696} a^{9} + \frac{136518}{52796003} a^{7} - \frac{516493}{16244924} a^{5} - \frac{731314}{4061231} a^{3} + \frac{174739}{4061231} a$, $\frac{1}{43926274496} a^{12} - \frac{561601}{844736048} a^{8} + \frac{1464433}{422368024} a^{6} + \frac{1941695}{16244924} a^{4} + \frac{1058639}{8122462} a^{2} - \frac{483}{4033}$, $\frac{1}{43926274496} a^{13} - \frac{39}{32489848} a^{9} - \frac{1987815}{422368024} a^{7} - \frac{292587}{16244924} a^{5} + \frac{373029}{8122462} a^{3} + \frac{900971}{4061231} a$, $\frac{1}{87852548992} a^{14} - \frac{147171}{105592006} a^{8} - \frac{17409}{22229896} a^{6} - \frac{75383}{854996} a^{4} - \frac{931317}{8122462} a^{2} + \frac{1994}{4033}$, $\frac{1}{87852548992} a^{15} + \frac{67}{211184012} a^{9} - \frac{48401}{32489848} a^{7} + \frac{433407}{4061231} a^{5} - \frac{326367}{8122462} a^{3} + \frac{306032}{4061231} a$, $\frac{1}{175705097984} a^{16} + \frac{1703867}{844736048} a^{8} - \frac{412811}{211184012} a^{6} - \frac{44412}{4061231} a^{4} + \frac{125449}{8122462} a^{2} + \frac{698}{4033}$, $\frac{1}{175705097984} a^{17} + \frac{1941}{844736048} a^{9} - \frac{950645}{422368024} a^{7} - \frac{552717}{16244924} a^{5} + \frac{738252}{4061231} a^{3} - \frac{119846}{4061231} a$
Class group and class number
$C_{2}\times C_{212388954}$, which has order $424777908$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54961806.57802202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-78}) \), \(\Q(\zeta_{9})^+\), 6.0.22140698112.9, 9.9.151470380950257681.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | $18$ | $18$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{18}$ | $18$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{18}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 13 | Data not computed | ||||||