Normalized defining polynomial
\( x^{18} - 18 x^{16} - 8 x^{15} + 135 x^{14} + 120 x^{13} - 496 x^{12} - 720 x^{11} + 687 x^{10} + 2032 x^{9} + 918 x^{8} - 2088 x^{7} - 3527 x^{6} - 1512 x^{5} + 588 x^{4} + 3072 x^{3} + 4464 x^{2} + 1152 x + 3392 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-202243698273060960219338637312=-\,2^{31}\cdot 3^{18}\cdot 79^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{4} - \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{7} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{8} - \frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{32} a^{9} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{3}{32} a^{5} + \frac{1}{8} a^{4} - \frac{7}{32} a^{3} - \frac{5}{16} a^{2} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{32} a^{6} - \frac{1}{8} a^{5} - \frac{7}{32} a^{4} - \frac{1}{16} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{64} a^{9} - \frac{1}{64} a^{8} - \frac{3}{64} a^{7} + \frac{1}{64} a^{6} + \frac{5}{64} a^{5} - \frac{3}{64} a^{4} - \frac{5}{32} a^{3} + \frac{1}{16} a^{2} + \frac{1}{8} a$, $\frac{1}{128} a^{12} + \frac{1}{64} a^{8} - \frac{1}{16} a^{6} + \frac{21}{128} a^{4} - \frac{1}{2} a^{2} + \frac{3}{8}$, $\frac{1}{128} a^{13} - \frac{1}{64} a^{9} - \frac{1}{32} a^{7} - \frac{1}{16} a^{6} + \frac{9}{128} a^{5} + \frac{1}{8} a^{4} + \frac{7}{32} a^{3} - \frac{5}{16} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{256} a^{14} - \frac{1}{256} a^{13} + \frac{1}{128} a^{10} - \frac{1}{128} a^{9} - \frac{1}{32} a^{8} + \frac{1}{32} a^{7} - \frac{11}{256} a^{6} - \frac{21}{256} a^{5} - \frac{1}{4} a^{3} + \frac{1}{16} a^{2} - \frac{3}{16} a - \frac{1}{2}$, $\frac{1}{2048} a^{15} + \frac{1}{2048} a^{13} - \frac{1}{1024} a^{12} - \frac{3}{1024} a^{11} - \frac{1}{256} a^{10} + \frac{9}{1024} a^{9} - \frac{3}{512} a^{8} + \frac{21}{2048} a^{7} + \frac{7}{256} a^{6} + \frac{93}{2048} a^{5} - \frac{1}{1024} a^{4} + \frac{29}{128} a^{3} - \frac{13}{32} a^{2} + \frac{27}{128} a + \frac{25}{64}$, $\frac{1}{2048} a^{16} + \frac{1}{2048} a^{14} - \frac{1}{1024} a^{13} - \frac{3}{1024} a^{12} - \frac{1}{256} a^{11} + \frac{9}{1024} a^{10} - \frac{3}{512} a^{9} + \frac{21}{2048} a^{8} + \frac{7}{256} a^{7} + \frac{93}{2048} a^{6} - \frac{1}{1024} a^{5} + \frac{29}{128} a^{4} + \frac{3}{32} a^{3} + \frac{27}{128} a^{2} - \frac{7}{64} a$, $\frac{1}{8192} a^{17} + \frac{1}{8192} a^{16} - \frac{1}{8192} a^{15} - \frac{1}{8192} a^{14} + \frac{11}{4096} a^{13} - \frac{5}{4096} a^{12} + \frac{11}{4096} a^{11} - \frac{53}{4096} a^{10} + \frac{37}{8192} a^{9} + \frac{229}{8192} a^{8} - \frac{405}{8192} a^{7} - \frac{405}{8192} a^{6} + \frac{109}{2048} a^{5} - \frac{123}{2048} a^{4} + \frac{29}{512} a^{3} + \frac{213}{512} a^{2} - \frac{25}{128} a - \frac{25}{128}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{2048} a^{15} + \frac{15}{2048} a^{13} + \frac{1}{1024} a^{12} - \frac{45}{1024} a^{11} - \frac{3}{256} a^{10} + \frac{151}{1024} a^{9} + \frac{27}{512} a^{8} - \frac{693}{2048} a^{7} - \frac{51}{256} a^{6} + \frac{1107}{2048} a^{5} + \frac{657}{1024} a^{4} - \frac{29}{128} a^{3} - \frac{27}{32} a^{2} - \frac{75}{128} a - \frac{41}{64} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1456016777.95 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 559872 |
| The 174 conjugacy class representatives for t18n903 are not computed |
| Character table for t18n903 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 3.3.316.1, 6.0.399424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | $18$ | ${\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.8.6 | $x^{4} + 6 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $D_{4}$ | $[2, 3]^{2}$ | |
| 2.4.9.4 | $x^{4} + 2 x^{2} + 10$ | $4$ | $1$ | $9$ | $D_{4}$ | $[2, 3, 7/2]$ | |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| 3 | Data not computed | ||||||
| $79$ | 79.4.2.1 | $x^{4} + 395 x^{2} + 56169$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 79.6.0.1 | $x^{6} - x + 6$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 79.8.4.1 | $x^{8} + 37446 x^{4} - 493039 x^{2} + 350550729$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |