Normalized defining polynomial
\( x^{18} - 6 x^{17} + 6 x^{16} + 6 x^{15} + 267 x^{14} - 1599 x^{13} + 3156 x^{12} - 267 x^{11} - 4575 x^{10} - 6847 x^{9} + 34635 x^{8} + 2436 x^{7} - 52743 x^{6} - 51519 x^{5} + 250608 x^{4} + 227274 x^{3} - 605661 x^{2} - 261210 x + 836587 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-202215111299126210886918044067=-\,3^{31}\cdot 41^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{5} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{9} + \frac{1}{3}$, $\frac{1}{3} a^{10} + \frac{1}{3} a$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{4}{9} a^{2} - \frac{4}{9} a + \frac{4}{9}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{9} + \frac{1}{9} a^{3} + \frac{1}{9}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{10} + \frac{1}{9} a^{4} + \frac{1}{9} a$, $\frac{1}{153} a^{14} - \frac{5}{153} a^{13} + \frac{2}{153} a^{12} - \frac{1}{153} a^{11} - \frac{7}{51} a^{10} + \frac{2}{17} a^{9} + \frac{2}{51} a^{8} - \frac{1}{51} a^{7} + \frac{1}{17} a^{6} + \frac{2}{9} a^{5} - \frac{59}{153} a^{4} - \frac{13}{153} a^{3} + \frac{62}{153} a^{2} + \frac{8}{17} a - \frac{1}{3}$, $\frac{1}{10863} a^{15} + \frac{1}{639} a^{14} + \frac{100}{3621} a^{13} + \frac{1}{1207} a^{12} + \frac{586}{10863} a^{11} + \frac{1375}{10863} a^{10} + \frac{997}{10863} a^{9} + \frac{502}{3621} a^{8} - \frac{461}{3621} a^{7} - \frac{1043}{10863} a^{6} + \frac{1964}{10863} a^{5} - \frac{743}{3621} a^{4} - \frac{409}{3621} a^{3} + \frac{4411}{10863} a^{2} - \frac{1238}{10863} a - \frac{238}{639}$, $\frac{1}{619191} a^{16} + \frac{13}{619191} a^{15} + \frac{10}{68799} a^{14} - \frac{18586}{619191} a^{13} - \frac{25081}{619191} a^{12} + \frac{3395}{68799} a^{11} - \frac{36524}{619191} a^{10} + \frac{11860}{619191} a^{9} + \frac{3508}{68799} a^{8} + \frac{102682}{619191} a^{7} - \frac{9626}{619191} a^{6} + \frac{10713}{22933} a^{5} - \frac{7921}{32589} a^{4} - \frac{253168}{619191} a^{3} - \frac{936}{22933} a^{2} + \frac{89656}{619191} a - \frac{3166}{36423}$, $\frac{1}{14666994566190475534663410824195496291} a^{17} + \frac{618503783140343825136108225434}{862764386246498560862553577893852723} a^{16} + \frac{8179477581257896219990432940162}{257315694143692553239708961827991163} a^{15} + \frac{22897727527433443280950292957042558}{14666994566190475534663410824195496291} a^{14} - \frac{212943735126335150467938940723314421}{14666994566190475534663410824195496291} a^{13} + \frac{171104486739581049069539013518705315}{4888998188730158511554470274731832097} a^{12} - \frac{737755302761903928413122279987987811}{14666994566190475534663410824195496291} a^{11} - \frac{1609742718414872801690704806520563167}{14666994566190475534663410824195496291} a^{10} - \frac{64593301323191473340718969238179556}{543222020970017612394941141636870233} a^{9} + \frac{98732753648360221262773405392018361}{14666994566190475534663410824195496291} a^{8} + \frac{2097673508914814620276519019852099491}{14666994566190475534663410824195496291} a^{7} - \frac{99050087783119413364014711599499397}{4888998188730158511554470274731832097} a^{6} - \frac{3512694559648457593294254067068106300}{14666994566190475534663410824195496291} a^{5} - \frac{6634007450424955679712136947120042400}{14666994566190475534663410824195496291} a^{4} + \frac{8880475998982683180616396072864526}{4888998188730158511554470274731832097} a^{3} + \frac{10986889892590532533910558461653274}{50750846249794032991914916346697219} a^{2} + \frac{1961963824034784298778340769827704131}{14666994566190475534663410824195496291} a + \frac{3383235015790805893480133338580135}{95862709582944284540283730877094747}$
Class group and class number
$C_{2}\times C_{2}\times C_{38}$, which has order $152$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 269015.233286 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-123}) \), 3.1.1107.1 x3, \(\Q(\zeta_{9})^+\), 6.0.150730227.1, 6.0.1356572043.2 x2, 6.0.1356572043.1, 9.3.988941019347.3 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{18}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $41$ | 41.6.3.2 | $x^{6} - 1681 x^{2} + 895973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 41.6.3.2 | $x^{6} - 1681 x^{2} + 895973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 41.6.3.2 | $x^{6} - 1681 x^{2} + 895973$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |