Normalized defining polynomial
\( x^{18} - 3 x^{17} + 10 x^{16} - 9 x^{15} - 7 x^{14} + 118 x^{13} + 42 x^{12} - 536 x^{11} + 2032 x^{10} - 3800 x^{9} + 4088 x^{8} + 1616 x^{7} - 9680 x^{6} + 16256 x^{5} - 2176 x^{4} - 33024 x^{3} + 44288 x^{2} - 22528 x + 4096 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-200930163501792205662554161152=-\,2^{18}\cdot 3^{9}\cdot 7^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{8} a^{9} + \frac{1}{16} a^{8} - \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} + \frac{3}{32} a^{8} + \frac{1}{16} a^{7} + \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{13} - \frac{1}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{8} a^{9} - \frac{1}{32} a^{8} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{64} a^{14} - \frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{64} a^{10} + \frac{1}{16} a^{9} - \frac{3}{32} a^{8} + \frac{1}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{256} a^{15} + \frac{1}{256} a^{14} + \frac{1}{128} a^{13} + \frac{3}{256} a^{12} - \frac{3}{256} a^{11} + \frac{3}{128} a^{10} - \frac{5}{128} a^{9} + \frac{1}{32} a^{8} + \frac{1}{32} a^{7} + \frac{5}{32} a^{6} - \frac{1}{32} a^{5} - \frac{3}{16} a^{4} + \frac{5}{16} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{123392} a^{16} - \frac{5}{123392} a^{15} - \frac{109}{30848} a^{14} - \frac{713}{123392} a^{13} - \frac{277}{123392} a^{12} - \frac{245}{15424} a^{11} - \frac{2343}{61696} a^{10} + \frac{2001}{30848} a^{9} + \frac{737}{15424} a^{8} - \frac{277}{15424} a^{7} + \frac{2393}{15424} a^{6} - \frac{26}{241} a^{5} - \frac{849}{7712} a^{4} + \frac{181}{3856} a^{3} - \frac{311}{1928} a^{2} + \frac{145}{964} a - \frac{93}{241}$, $\frac{1}{1595097256131705417728} a^{17} - \frac{5745934389888023}{1595097256131705417728} a^{16} - \frac{338866157822196133}{797548628065852708864} a^{15} - \frac{11178721661408929825}{1595097256131705417728} a^{14} + \frac{1240527586970439949}{1595097256131705417728} a^{13} - \frac{11740516134773797239}{797548628065852708864} a^{12} - \frac{15427278045288186127}{797548628065852708864} a^{11} + \frac{1221817796739001113}{24923394627057897152} a^{10} - \frac{6353422662875259869}{99693578508231588608} a^{9} + \frac{11348394877719079933}{199387157016463177216} a^{8} - \frac{23460504317989992389}{199387157016463177216} a^{7} + \frac{20447905638111043111}{99693578508231588608} a^{6} - \frac{10844700312775261945}{99693578508231588608} a^{5} + \frac{202285349746690811}{24923394627057897152} a^{4} - \frac{158821267982499477}{1780242473361278368} a^{3} + \frac{2315297286839889265}{6230848656764474288} a^{2} + \frac{257017861846691353}{6230848656764474288} a - \frac{76308943797031663}{1557712164191118572}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{33791063290749}{3853273527406592} a^{17} + \frac{83163500008499}{3853273527406592} a^{16} - \frac{146255895426307}{1926636763703296} a^{15} + \frac{145556417080237}{3853273527406592} a^{14} + \frac{319135754802959}{3853273527406592} a^{13} - \frac{1906863789803913}{1926636763703296} a^{12} - \frac{1740131002464181}{1926636763703296} a^{11} + \frac{1018760688311745}{240829595462912} a^{10} - \frac{3735376769984855}{240829595462912} a^{9} + \frac{12000190567123727}{481659190925824} a^{8} - \frac{10690311906789047}{481659190925824} a^{7} - \frac{6344304316505175}{240829595462912} a^{6} + \frac{17048333286350749}{240829595462912} a^{5} - \frac{6245044816945993}{60207398865728} a^{4} - \frac{1135028298646069}{30103699432864} a^{3} + \frac{4071134319790741}{15051849716432} a^{2} - \frac{3625977850620357}{15051849716432} a + \frac{243921580809807}{3762962429108} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 297602831.7716659 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.728.1, 6.0.14309568.1, 6.0.223587.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.2.3 | $x^{3} - 28$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.1 | $x^{6} - 28$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |