Normalized defining polynomial
\( x^{18} - 3 x^{17} - 25 x^{16} + 97 x^{15} + 324 x^{14} - 1424 x^{13} - 2893 x^{12} + 12134 x^{11} + 25059 x^{10} - 36958 x^{9} - 87068 x^{8} + 95416 x^{7} + 313237 x^{6} + 151945 x^{5} - 220562 x^{4} - 362142 x^{3} - 140268 x^{2} + 158994 x + 138087 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-200930163501792205662554161152=-\,2^{18}\cdot 3^{9}\cdot 7^{10}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{6} a^{12} + \frac{1}{3} a^{11} + \frac{1}{6} a^{10} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{2} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{14} - \frac{1}{3} a^{11} - \frac{1}{6} a^{10} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{1842} a^{15} - \frac{74}{921} a^{14} + \frac{2}{921} a^{13} - \frac{25}{1842} a^{12} - \frac{279}{614} a^{11} - \frac{141}{614} a^{10} + \frac{328}{921} a^{9} - \frac{319}{921} a^{8} - \frac{21}{307} a^{7} + \frac{91}{307} a^{6} - \frac{22}{921} a^{5} + \frac{418}{921} a^{4} - \frac{173}{1842} a^{3} + \frac{334}{921} a^{2} + \frac{35}{614} a + \frac{45}{614}$, $\frac{1}{5526} a^{16} - \frac{103}{5526} a^{14} - \frac{47}{5526} a^{13} + \frac{125}{1842} a^{12} + \frac{343}{5526} a^{11} - \frac{2083}{5526} a^{10} + \frac{640}{2763} a^{9} + \frac{308}{921} a^{8} - \frac{1376}{2763} a^{7} - \frac{1063}{2763} a^{6} + \frac{539}{2763} a^{5} + \frac{1369}{5526} a^{4} + \frac{119}{2763} a^{3} - \frac{403}{2763} a^{2} - \frac{305}{614} a - \frac{401}{1842}$, $\frac{1}{11606121869973241602190511865359034} a^{17} - \frac{265961154459828937720241720731}{5803060934986620801095255932679517} a^{16} + \frac{1355323282215320048096886862555}{5803060934986620801095255932679517} a^{15} - \frac{76160551856376802092918244405808}{1934353644995540267031751977559839} a^{14} - \frac{455115628805865183928139313013967}{11606121869973241602190511865359034} a^{13} - \frac{184350493294997208094176767452157}{11606121869973241602190511865359034} a^{12} - \frac{29732811344777828848311802020079}{1934353644995540267031751977559839} a^{11} - \frac{3307891030228020285475099875210611}{11606121869973241602190511865359034} a^{10} + \frac{1439588312933728066549194621286846}{5803060934986620801095255932679517} a^{9} + \frac{2719198314512530483979713933115932}{5803060934986620801095255932679517} a^{8} + \frac{340829942933176952338297292907320}{1934353644995540267031751977559839} a^{7} - \frac{1710966730858488795473368130877932}{5803060934986620801095255932679517} a^{6} - \frac{4709292592681868658193645630690597}{11606121869973241602190511865359034} a^{5} + \frac{2815027469635803319499875756750639}{5803060934986620801095255932679517} a^{4} - \frac{1689283312582624369954555334713261}{11606121869973241602190511865359034} a^{3} + \frac{1116792840483332658905713576010495}{5803060934986620801095255932679517} a^{2} - \frac{620887877070310604354626897390555}{1934353644995540267031751977559839} a + \frac{27182641004824436994157164668377}{57741899850613142299455282912234}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4483978576306547}{1115926554573558198} a^{17} + \frac{3557382330649714}{185987759095593033} a^{16} + \frac{74468977801064783}{1115926554573558198} a^{15} - \frac{282798671586213547}{557963277286779099} a^{14} - \frac{25383947323679686}{61995919698531011} a^{13} + \frac{7179652498751357887}{1115926554573558198} a^{12} + \frac{172938812805192796}{557963277286779099} a^{11} - \frac{54912094179860851537}{1115926554573558198} a^{10} - \frac{884223825364639105}{61995919698531011} a^{9} + \frac{96530931712142259139}{557963277286779099} a^{8} + \frac{25941886794083057876}{557963277286779099} a^{7} - \frac{258398468744761478959}{557963277286779099} a^{6} - \frac{499002537550884123773}{1115926554573558198} a^{5} + \frac{95627786631079824050}{557963277286779099} a^{4} + \frac{328559708883832918883}{557963277286779099} a^{3} + \frac{79592079321924536408}{185987759095593033} a^{2} - \frac{34094619062556010075}{185987759095593033} a - \frac{590831116390971609}{1850624468612866} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 187527338.95768923 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.2184.1, 6.0.223587.1, 6.0.14309568.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 2.12.18.15 | $x^{12} - 16 x^{10} + 24 x^{6} + 64 x^{4} + 64$ | $2$ | $6$ | $18$ | $C_6\times C_2$ | $[3]^{6}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.2.1 | $x^{3} + 14$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.5.4 | $x^{6} + 14$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| $13$ | 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.6.5.3 | $x^{6} - 208$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 13.6.3.1 | $x^{6} - 52 x^{4} + 676 x^{2} - 79092$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |