Normalized defining polynomial
\( x^{18} + 15 x^{16} - 8 x^{15} + 333 x^{14} + 24 x^{13} + 5655 x^{12} + 2670 x^{11} + 69687 x^{10} + 43582 x^{9} + 674097 x^{8} + 378498 x^{7} + 4862043 x^{6} + 2018526 x^{5} + 23403354 x^{4} + 6369416 x^{3} + 65929308 x^{2} + 9405912 x + 82566296 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2001504424181159874396672000000000=-\,2^{18}\cdot 3^{24}\cdot 5^{9}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1260=2^{2}\cdot 3^{2}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1260}(1,·)$, $\chi_{1260}(1219,·)$, $\chi_{1260}(961,·)$, $\chi_{1260}(841,·)$, $\chi_{1260}(781,·)$, $\chi_{1260}(79,·)$, $\chi_{1260}(919,·)$, $\chi_{1260}(541,·)$, $\chi_{1260}(799,·)$, $\chi_{1260}(739,·)$, $\chi_{1260}(421,·)$, $\chi_{1260}(361,·)$, $\chi_{1260}(1159,·)$, $\chi_{1260}(1201,·)$, $\chi_{1260}(499,·)$, $\chi_{1260}(121,·)$, $\chi_{1260}(379,·)$, $\chi_{1260}(319,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{13} + \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2032} a^{16} - \frac{69}{1016} a^{15} + \frac{69}{2032} a^{14} - \frac{15}{1016} a^{13} + \frac{739}{2032} a^{12} + \frac{191}{1016} a^{11} - \frac{943}{2032} a^{10} + \frac{49}{127} a^{9} - \frac{343}{2032} a^{8} - \frac{55}{508} a^{7} + \frac{363}{2032} a^{6} - \frac{193}{508} a^{5} - \frac{487}{2032} a^{4} + \frac{75}{508} a^{3} + \frac{137}{508} a^{2} - \frac{77}{254} a + \frac{21}{508}$, $\frac{1}{48873621264658762942584345382404200239296310461234992} a^{17} - \frac{2724805036758102687479907034859828032049093476463}{48873621264658762942584345382404200239296310461234992} a^{16} - \frac{3709880930530592591731021627962069995670407601504873}{48873621264658762942584345382404200239296310461234992} a^{15} + \frac{3808299837207453726721407884945105217477181867408133}{48873621264658762942584345382404200239296310461234992} a^{14} + \frac{12259445274044431752878223244307724962419258226619753}{48873621264658762942584345382404200239296310461234992} a^{13} + \frac{13989072384562200387972253898467959040972007167455619}{48873621264658762942584345382404200239296310461234992} a^{12} + \frac{4965605181416861581359509564557554758026117180080875}{48873621264658762942584345382404200239296310461234992} a^{11} - \frac{14173632703954256740319171286975813122206314243846153}{48873621264658762942584345382404200239296310461234992} a^{10} + \frac{21405224406850688901344201660345383994451104270595721}{48873621264658762942584345382404200239296310461234992} a^{9} + \frac{23218267939543850375457562218322462807734798625853323}{48873621264658762942584345382404200239296310461234992} a^{8} + \frac{18375140189784050568991602491729225380357977629155823}{48873621264658762942584345382404200239296310461234992} a^{7} - \frac{17897314207376941626473486329801202280764518425970999}{48873621264658762942584345382404200239296310461234992} a^{6} + \frac{6478104014305480319567508358156012108260638091293173}{48873621264658762942584345382404200239296310461234992} a^{5} + \frac{17547665269571092912425760905917936010258324225126571}{48873621264658762942584345382404200239296310461234992} a^{4} + \frac{1127802486924894656835527160708472370385291434827783}{3054601329041172683911521586400262514956019403827187} a^{3} - \frac{727754284425404234392878204765815137977837023120681}{6109202658082345367823043172800525029912038807654374} a^{2} - \frac{2333224704625489938064226866218988915118062162204631}{12218405316164690735646086345601050059824077615308748} a + \frac{2219912712624290237935652519852828167449713586133061}{12218405316164690735646086345601050059824077615308748}$
Class group and class number
$C_{6}\times C_{6}\times C_{6}\times C_{6}\times C_{18}$, which has order $23328$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.4888887 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.52488000.1, 6.0.126023688000.1, 6.0.19208000.1, 6.0.126023688000.14, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $5$ | 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |