Normalized defining polynomial
\( x^{18} - 108 x^{15} + 126 x^{14} + 7191 x^{12} + 35154 x^{11} + 112014 x^{10} + 187920 x^{9} + 1659042 x^{8} - 3068604 x^{7} + 16914231 x^{6} - 36738198 x^{5} + 93863448 x^{4} - 168009228 x^{3} + 248784480 x^{2} - 230812092 x + 163085133 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2000132277685860378930930657332822016=-\,2^{24}\cdot 3^{45}\cdot 7^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{15} - \frac{1}{25} a^{12} + \frac{1}{25} a^{11} + \frac{9}{25} a^{9} + \frac{11}{25} a^{8} - \frac{11}{25} a^{7} + \frac{8}{25} a^{6} - \frac{6}{25} a^{5} - \frac{6}{25} a^{4} + \frac{12}{25} a^{3} + \frac{2}{5} a^{2} + \frac{6}{25} a + \frac{6}{25}$, $\frac{1}{25} a^{16} - \frac{1}{25} a^{13} + \frac{1}{25} a^{12} + \frac{9}{25} a^{10} + \frac{11}{25} a^{9} - \frac{11}{25} a^{8} + \frac{8}{25} a^{7} - \frac{6}{25} a^{6} - \frac{6}{25} a^{5} + \frac{12}{25} a^{4} + \frac{2}{5} a^{3} + \frac{6}{25} a^{2} + \frac{6}{25} a$, $\frac{1}{222364464966156604517205216279754932868086124980439315691179516080575} a^{17} - \frac{167907812868832211338451944430214247795082894384510136874522362059}{8894578598646264180688208651190197314723444999217572627647180643223} a^{16} - \frac{4304771605276563476203262759985758523351972132335388610392725207356}{222364464966156604517205216279754932868086124980439315691179516080575} a^{15} - \frac{15599339817807545324276793153520345771318942289731744030987848978266}{222364464966156604517205216279754932868086124980439315691179516080575} a^{14} + \frac{11363059128700247880071938344738326476240483640159126040376863682301}{222364464966156604517205216279754932868086124980439315691179516080575} a^{13} - \frac{13057861786516545924752888447129180343378630326756718768354889365174}{222364464966156604517205216279754932868086124980439315691179516080575} a^{12} + \frac{86722574816431163629802533361235242752086260868273498261951587499}{282546969461444224291239156645177805423235228691790744207343730725} a^{11} + \frac{3417480497004867660145534900010899754356354413738778517423929296421}{222364464966156604517205216279754932868086124980439315691179516080575} a^{10} - \frac{14336360937048084229507525536416798848746875654939351280420473949814}{44472892993231320903441043255950986573617224996087863138235903216115} a^{9} + \frac{97789032232579044167207413990522009027705167570143905129283700285697}{222364464966156604517205216279754932868086124980439315691179516080575} a^{8} + \frac{6954626119227671648422896998915244847240278623270731013127823836193}{44472892993231320903441043255950986573617224996087863138235903216115} a^{7} + \frac{48521085954146159824552753236248623652930546246342409357295538928431}{222364464966156604517205216279754932868086124980439315691179516080575} a^{6} + \frac{96796737839799993946464232338220707063789124735590017973658277909583}{222364464966156604517205216279754932868086124980439315691179516080575} a^{5} + \frac{50895325879121452837166982821455447478515871637536614734576516087976}{222364464966156604517205216279754932868086124980439315691179516080575} a^{4} - \frac{10272316598710633382991469535972754495135827948033777794824544320421}{222364464966156604517205216279754932868086124980439315691179516080575} a^{3} - \frac{83802908084161118634278806592739635045363657148886265975382215750409}{222364464966156604517205216279754932868086124980439315691179516080575} a^{2} - \frac{40848450098327837075456047186518258784891487023865856222566866410346}{222364464966156604517205216279754932868086124980439315691179516080575} a - \frac{41218285592765433184595443996648881460038899122709475557620260475096}{222364464966156604517205216279754932868086124980439315691179516080575}$
Class group and class number
$C_{2}\times C_{18}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7090895688.796117 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times He_3:C_2$ (as 18T41):
| A solvable group of order 108 |
| The 20 conjugacy class representatives for $C_2\times He_3:C_2$ |
| Character table for $C_2\times He_3:C_2$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.1.243.1, 6.0.3888730944.9, 9.1.2008387814976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.8.3 | $x^{6} + 2 x^{3} + 6$ | $6$ | $1$ | $8$ | $D_{6}$ | $[2]_{3}^{2}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |