Normalized defining polynomial
\( x^{18} + 22 x^{16} - 16 x^{15} + 263 x^{14} - 188 x^{13} + 1863 x^{12} - 1438 x^{11} + 7585 x^{10} - 8362 x^{9} + 18826 x^{8} - 50624 x^{7} + 40224 x^{6} - 113596 x^{5} + 67751 x^{4} - 75684 x^{3} + 380717 x^{2} + 309326 x + 86293 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-197686063144298900674444263424=-\,2^{24}\cdot 101^{7}\cdot 479^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 101, 479$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{55458484167265003832956693766472074042812292789147} a^{17} - \frac{9290040381590355352789187034053146258128637763351}{55458484167265003832956693766472074042812292789147} a^{16} - \frac{1701120698445893952222922454549588777156497787965}{55458484167265003832956693766472074042812292789147} a^{15} - \frac{4590943922751706298125121811559589115222200945110}{55458484167265003832956693766472074042812292789147} a^{14} + \frac{6031694631136930060617110392028543554863833297567}{55458484167265003832956693766472074042812292789147} a^{13} + \frac{18176033419814297439308106053532393300396671010506}{55458484167265003832956693766472074042812292789147} a^{12} - \frac{11133636090051323532467706828762454453248247110248}{55458484167265003832956693766472074042812292789147} a^{11} - \frac{23147802686618178164325458665591507722225664609754}{55458484167265003832956693766472074042812292789147} a^{10} + \frac{17070706422591098005136455591203751612675091316799}{55458484167265003832956693766472074042812292789147} a^{9} + \frac{21246643600526966607000693220212735779642210044035}{55458484167265003832956693766472074042812292789147} a^{8} - \frac{25904608340968885106509367541381114454652412084464}{55458484167265003832956693766472074042812292789147} a^{7} - \frac{7703831980515019800051320717691768338883545972483}{55458484167265003832956693766472074042812292789147} a^{6} - \frac{12551439083793989651271140815560069424840295665011}{55458484167265003832956693766472074042812292789147} a^{5} + \frac{2921433138680017343891203676332855067769119785442}{55458484167265003832956693766472074042812292789147} a^{4} - \frac{19493756844519844144705699852834986643364636564935}{55458484167265003832956693766472074042812292789147} a^{3} + \frac{18492893816196382035027801271529120702062945544813}{55458484167265003832956693766472074042812292789147} a^{2} - \frac{27610096228111762360517032056237934033176799069120}{55458484167265003832956693766472074042812292789147} a - \frac{18174201517477201647684937956630489532156350457951}{55458484167265003832956693766472074042812292789147}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4752454.46119 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 331776 |
| The 165 conjugacy class representatives for t18n880 are not computed |
| Character table for t18n880 is not computed |
Intermediate fields
| 3.3.404.1, 9.7.31584907456.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 101 | Data not computed | ||||||
| 479 | Data not computed | ||||||