Normalized defining polynomial
\( x^{18} - 7 x^{17} + 4 x^{16} + 184 x^{15} + 128 x^{14} - 8092 x^{13} + 51598 x^{12} - 134342 x^{11} + 478943 x^{10} - 3007341 x^{9} + 21773822 x^{8} - 92692658 x^{7} + 352111696 x^{6} - 1127712400 x^{5} + 4235753024 x^{4} - 12494373536 x^{3} + 32946159232 x^{2} - 50298266368 x + 59975185408 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1968100446373322200925262150357418865721092079616=-\,2^{18}\cdot 31^{9}\cdot 127^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $481.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 31, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{9} + \frac{1}{16} a^{7} + \frac{1}{16} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{1}{64} a^{10} + \frac{1}{64} a^{8} + \frac{3}{32} a^{7} + \frac{5}{64} a^{6} + \frac{3}{16} a^{5} - \frac{7}{32} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{13} - \frac{1}{64} a^{11} - \frac{1}{32} a^{10} - \frac{3}{64} a^{9} + \frac{5}{64} a^{7} + \frac{3}{32} a^{6} + \frac{7}{32} a^{5} - \frac{1}{16} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{128} a^{14} - \frac{1}{128} a^{13} - \frac{1}{128} a^{12} + \frac{3}{128} a^{11} - \frac{1}{128} a^{10} - \frac{1}{128} a^{9} - \frac{3}{128} a^{8} + \frac{5}{128} a^{7} + \frac{1}{16} a^{6} - \frac{15}{64} a^{5} - \frac{5}{32} a^{4} + \frac{3}{16} a^{3} - \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{128} a^{15} - \frac{1}{32} a^{11} - \frac{1}{32} a^{10} - \frac{1}{64} a^{9} + \frac{3}{128} a^{7} + \frac{3}{32} a^{6} - \frac{11}{64} a^{5} - \frac{1}{16} a^{4} + \frac{3}{16} a^{3}$, $\frac{1}{512} a^{16} - \frac{1}{256} a^{14} + \frac{1}{256} a^{13} + \frac{1}{256} a^{12} + \frac{7}{256} a^{11} + \frac{3}{128} a^{10} - \frac{15}{256} a^{9} + \frac{13}{512} a^{8} + \frac{13}{256} a^{7} + \frac{31}{256} a^{6} - \frac{23}{128} a^{5} + \frac{5}{64} a^{4} + \frac{13}{32} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{10018602273575239020506163584658702078079351830500031056384} a^{17} - \frac{8415780650706130279148215425010844032920875115674943}{5009301136787619510253081792329351039039675915250015528192} a^{16} - \frac{8668091392662279978534463268835578216323363930090862793}{5009301136787619510253081792329351039039675915250015528192} a^{15} + \frac{9520777010695314679520676661442449329224942719011263199}{5009301136787619510253081792329351039039675915250015528192} a^{14} + \frac{9601056767527960465299274559260255600594338672435092903}{5009301136787619510253081792329351039039675915250015528192} a^{13} + \frac{27031586580695119564117679676333849319523937863540098061}{5009301136787619510253081792329351039039675915250015528192} a^{12} + \frac{17795199045961290656062127858528984791316974357912065167}{626162642098452438781635224041168879879959489406251941024} a^{11} - \frac{113005577185980003129557855660324524357367131982018826015}{5009301136787619510253081792329351039039675915250015528192} a^{10} + \frac{371502861970221797657029817009425479549174009135994488665}{10018602273575239020506163584658702078079351830500031056384} a^{9} - \frac{29013772428283686150938384258009117947854752374363731361}{2504650568393809755126540896164675519519837957625007764096} a^{8} + \frac{371704997744547580128813788180938518425892777314963495869}{5009301136787619510253081792329351039039675915250015528192} a^{7} - \frac{50554018683869476086759957565778317912633691014058575573}{1252325284196904877563270448082337759759918978812503882048} a^{6} - \frac{66620952953361422248593990267753965282037411018472102349}{313081321049226219390817612020584439939979744703125970512} a^{5} + \frac{120066024908882200629367667587521642213743769018892566981}{626162642098452438781635224041168879879959489406251941024} a^{4} + \frac{13900360136726128071849573891711524959353004448086477145}{313081321049226219390817612020584439939979744703125970512} a^{3} + \frac{77441829863282004690883420908270198926661690645669046963}{156540660524613109695408806010292219969989872351562985256} a^{2} + \frac{9339553680997057919956326226855227286239705517286884993}{19567582565576638711926100751286527496248734043945373157} a + \frac{2031206124551919727657661309472095534193080201077365238}{19567582565576638711926100751286527496248734043945373157}$
Class group and class number
$C_{9}\times C_{9}\times C_{244021806}$, which has order $19765766286$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5546046730.2947445 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-31}) \), 3.3.16129.1, 3.3.1016.1, 6.0.7749969000031.1, 6.0.30751938496.4, 9.9.272832440404737536.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.3 | $x^{2} + 2$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $31$ | 31.6.3.2 | $x^{6} - 961 x^{2} + 268119$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 31.12.6.1 | $x^{12} + 178746 x^{6} - 114516604 x^{2} + 7987533129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $127$ | 127.6.4.1 | $x^{6} + 1016 x^{3} + 435483$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 127.12.10.1 | $x^{12} - 1270 x^{6} + 11758041$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |