Normalized defining polynomial
\( x^{18} - 3 x^{16} - 81 x^{14} + 471 x^{12} + 1048 x^{10} + 3810 x^{8} - 2286 x^{6} + 1383 x^{4} - 1301 x^{2} + 567 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1963654613102253673602960967=-\,7^{9}\cdot 17^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{42} a^{10} - \frac{2}{7} a^{8} + \frac{1}{14} a^{6} - \frac{2}{7} a^{4} - \frac{1}{2} a^{3} + \frac{4}{21} a^{2} - \frac{1}{2}$, $\frac{1}{42} a^{11} + \frac{1}{21} a^{9} + \frac{1}{14} a^{7} - \frac{2}{7} a^{5} - \frac{1}{2} a^{4} + \frac{4}{21} a^{3} + \frac{1}{6} a$, $\frac{1}{210} a^{12} - \frac{1}{105} a^{10} + \frac{31}{70} a^{8} - \frac{11}{35} a^{6} - \frac{1}{2} a^{5} + \frac{4}{15} a^{4} + \frac{101}{210} a^{2} + \frac{2}{5}$, $\frac{1}{210} a^{13} - \frac{1}{105} a^{11} - \frac{2}{35} a^{9} - \frac{1}{2} a^{8} + \frac{13}{70} a^{7} + \frac{4}{15} a^{5} + \frac{101}{210} a^{3} - \frac{1}{2} a^{2} - \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{51870} a^{14} - \frac{1}{5187} a^{12} + \frac{11}{2730} a^{10} + \frac{23}{91} a^{8} - \frac{1}{2} a^{7} - \frac{10268}{25935} a^{6} + \frac{259}{7410} a^{4} - \frac{8992}{25935} a^{2} + \frac{124}{1235}$, $\frac{1}{155610} a^{15} - \frac{1}{15561} a^{13} + \frac{38}{4095} a^{11} + \frac{73}{1638} a^{9} - \frac{21383}{77805} a^{7} - \frac{1}{2} a^{6} - \frac{13007}{155610} a^{5} - \frac{1}{2} a^{4} + \frac{21883}{77805} a^{3} - \frac{1}{2} a^{2} + \frac{5312}{11115} a - \frac{1}{2}$, $\frac{1}{10704256290} a^{16} + \frac{89321}{10704256290} a^{14} - \frac{873406}{764589735} a^{12} - \frac{15473}{112676382} a^{10} - \frac{37180075}{82340433} a^{8} + \frac{386337025}{1070425629} a^{6} - \frac{1}{2} a^{5} + \frac{977480261}{10704256290} a^{4} - \frac{1730035882}{5352128145} a^{2} - \frac{1}{2} a + \frac{46270647}{169908830}$, $\frac{1}{10704256290} a^{17} + \frac{3422}{1784042715} a^{15} - \frac{39251}{36409035} a^{13} - \frac{589481}{62597990} a^{11} + \frac{4166668}{1070425629} a^{9} - \frac{1}{2} a^{8} + \frac{484357493}{3568085430} a^{7} - \frac{1}{2} a^{6} + \frac{312036464}{1784042715} a^{5} - \frac{1}{2} a^{4} + \frac{235198064}{594680905} a^{3} - \frac{1}{2} a^{2} + \frac{225105611}{764589735} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10137100.5942 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 3.1.2023.1 x3, 6.0.28647703.1, 9.1.16748793615841.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17 | Data not computed | ||||||