\\ Pari/GP code for working with number field 18.0.1955476758561888850288369070881021250289363000000000000.1. \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^18 - 9*y^17 + 39*y^16 - 18*y^15 - 489*y^14 + 2259*y^13 - 46082*y^12 + 294723*y^11 - 868809*y^10 - 832476*y^9 + 9141591*y^8 - 21041973*y^7 + 634588399*y^6 - 1846066752*y^5 + 2444612454*y^4 - 2002296426*y^3 + 1157395500*y^2 - 374881932*y + 57871188, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: \\ self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^18 - 9*x^17 + 39*x^16 - 18*x^15 - 489*x^14 + 2259*x^13 - 46082*x^12 + 294723*x^11 - 868809*x^10 - 832476*x^9 + 9141591*x^8 - 21041973*x^7 + 634588399*x^6 - 1846066752*x^5 + 2444612454*x^4 - 2002296426*x^3 + 1157395500*x^2 - 374881932*x + 57871188, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])