Normalized defining polynomial
\( x^{18} - 3 x^{17} - 21 x^{16} + 54 x^{15} + 228 x^{14} - 504 x^{13} - 1012 x^{12} + 2040 x^{11} + 4523 x^{10} - 6703 x^{9} - 1497 x^{8} + 252 x^{7} + 34702 x^{6} - 21324 x^{5} + 57104 x^{4} - 90118 x^{3} + 127507 x^{2} + 22997 x + 160003 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-195416899593798138941703979008=-\,2^{20}\cdot 3^{9}\cdot 79^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 79$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{327692} a^{15} + \frac{1467}{81923} a^{14} + \frac{383}{81923} a^{13} + \frac{1263}{327692} a^{12} + \frac{46535}{327692} a^{11} - \frac{4379}{19276} a^{10} - \frac{80905}{327692} a^{9} + \frac{7550}{81923} a^{8} - \frac{58577}{327692} a^{7} - \frac{22053}{327692} a^{6} - \frac{77839}{327692} a^{5} - \frac{25191}{81923} a^{4} - \frac{2862}{81923} a^{3} - \frac{12175}{327692} a^{2} + \frac{118733}{327692} a + \frac{755}{5372}$, $\frac{1}{327692} a^{16} - \frac{6058}{81923} a^{14} + \frac{23017}{327692} a^{13} + \frac{8321}{327692} a^{12} - \frac{10541}{327692} a^{11} - \frac{62817}{327692} a^{10} - \frac{11242}{81923} a^{9} + \frac{9195}{327692} a^{8} - \frac{41125}{327692} a^{7} + \frac{54671}{327692} a^{6} - \frac{2120}{4819} a^{5} - \frac{24255}{163846} a^{4} + \frac{151675}{327692} a^{3} - \frac{39069}{327692} a^{2} - \frac{5997}{327692} a - \frac{563}{2686}$, $\frac{1}{56819199515981322826262194220498452} a^{17} - \frac{52246132121400540921772245651}{56819199515981322826262194220498452} a^{16} + \frac{4258584829588569925263958583}{56819199515981322826262194220498452} a^{15} + \frac{3914194320460559973829829676340165}{56819199515981322826262194220498452} a^{14} - \frac{6336571939144100420888751445777061}{56819199515981322826262194220498452} a^{13} + \frac{310039504603120919165386898776809}{28409599757990661413131097110249226} a^{12} - \frac{1682446519800784647577681075112548}{14204799878995330706565548555124613} a^{11} - \frac{12425470470063403406532955905406615}{56819199515981322826262194220498452} a^{10} - \frac{2689315427665197823832213414094131}{28409599757990661413131097110249226} a^{9} + \frac{13043806552521948385499050340057}{179807593405004186159057576647147} a^{8} + \frac{2622824937343715063429993106530308}{14204799878995330706565548555124613} a^{7} + \frac{1802633721042450975082214304987019}{56819199515981322826262194220498452} a^{6} - \frac{16476830519706375173402545697674117}{56819199515981322826262194220498452} a^{5} + \frac{16170897606854709606559867544922771}{56819199515981322826262194220498452} a^{4} - \frac{61693330155047029700536416223443}{719230373620016744636230306588588} a^{3} + \frac{6897894885445862321103824731601798}{14204799878995330706565548555124613} a^{2} + \frac{13577007286142508848593195107192841}{56819199515981322826262194220498452} a + \frac{1686223874505433921694866816098}{5415478413646713955991440547131}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{364364098457571}{207400872804292820803} a^{17} + \frac{8470847911051943}{829603491217171283212} a^{16} + \frac{12655034244460129}{829603491217171283212} a^{15} - \frac{9114402344017391}{48800205365715957836} a^{14} + \frac{13541076340459015}{414801745608585641606} a^{13} + \frac{759692914170821617}{414801745608585641606} a^{12} - \frac{2238504867100437601}{829603491217171283212} a^{11} - \frac{5969365566453214405}{829603491217171283212} a^{10} + \frac{11203687387169003263}{829603491217171283212} a^{9} + \frac{12068981103106149881}{414801745608585641606} a^{8} - \frac{71593234695704845825}{829603491217171283212} a^{7} + \frac{2985105994737669467}{829603491217171283212} a^{6} + \frac{49542960340331085291}{829603491217171283212} a^{5} + \frac{9342765837580502723}{48800205365715957836} a^{4} - \frac{254093235546166278319}{414801745608585641606} a^{3} + \frac{156296732622930161005}{414801745608585641606} a^{2} - \frac{590252664696434040735}{829603491217171283212} a + \frac{3886921569721071737}{3400014308267095423} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24722362.03581395 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.316.1, 6.0.2696112.3, 6.0.2696112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{9}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.2 | $x^{6} - 2 x^{3} + 4$ | $3$ | $2$ | $4$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.16.3 | $x^{12} - 30 x^{10} - 5 x^{8} + 19 x^{4} + 30 x^{2} + 1$ | $6$ | $2$ | $16$ | $C_6\times S_3$ | $[2]_{3}^{6}$ | |
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $79$ | 79.3.2.2 | $x^{3} + 158$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 79.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 79.6.3.1 | $x^{6} - 158 x^{4} + 6241 x^{2} - 7888624$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 79.6.5.3 | $x^{6} - 1264$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |