Normalized defining polynomial
\( x^{18} - 5 x^{17} + 24 x^{16} - 103 x^{15} + 325 x^{14} - 916 x^{13} + 2177 x^{12} - 4023 x^{11} + 6609 x^{10} - 11370 x^{9} + 22487 x^{8} - 47101 x^{7} + 79963 x^{6} - 92740 x^{5} + 67479 x^{4} - 27701 x^{3} + 5710 x^{2} - 1113 x + 441 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-195349314665489411651055616=-\,2^{12}\cdot 331^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 331$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{12} a^{10} - \frac{1}{12} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{3} a^{2} - \frac{5}{12} a + \frac{1}{4}$, $\frac{1}{36} a^{11} + \frac{1}{36} a^{10} - \frac{1}{36} a^{8} - \frac{11}{36} a^{7} - \frac{4}{9} a^{6} - \frac{5}{36} a^{5} + \frac{11}{36} a^{4} + \frac{1}{3} a^{3} - \frac{5}{36} a^{2} - \frac{11}{36} a - \frac{1}{3}$, $\frac{1}{72} a^{12} - \frac{1}{72} a^{11} + \frac{1}{72} a^{10} - \frac{1}{18} a^{9} + \frac{1}{24} a^{8} - \frac{11}{24} a^{7} + \frac{1}{6} a^{6} + \frac{1}{8} a^{5} + \frac{11}{72} a^{4} - \frac{7}{36} a^{3} - \frac{1}{72} a^{2} + \frac{19}{72} a + \frac{11}{24}$, $\frac{1}{72} a^{13} - \frac{1}{24} a^{10} - \frac{1}{72} a^{9} - \frac{1}{12} a^{8} + \frac{3}{8} a^{7} - \frac{3}{8} a^{6} - \frac{1}{18} a^{5} + \frac{7}{24} a^{4} + \frac{11}{24} a^{3} - \frac{5}{12} a^{2} + \frac{7}{18} a + \frac{11}{24}$, $\frac{1}{432} a^{14} + \frac{1}{432} a^{13} - \frac{1}{216} a^{12} + \frac{1}{144} a^{11} - \frac{7}{216} a^{10} - \frac{23}{432} a^{9} + \frac{11}{432} a^{8} - \frac{79}{216} a^{7} + \frac{25}{432} a^{6} + \frac{65}{144} a^{5} + \frac{5}{54} a^{4} + \frac{7}{432} a^{3} - \frac{29}{108} a^{2} - \frac{35}{144} a - \frac{17}{48}$, $\frac{1}{864} a^{15} - \frac{1}{288} a^{13} - \frac{1}{864} a^{12} + \frac{1}{864} a^{11} - \frac{1}{288} a^{10} - \frac{7}{432} a^{9} - \frac{55}{864} a^{8} + \frac{35}{288} a^{7} - \frac{83}{432} a^{6} - \frac{413}{864} a^{5} - \frac{85}{288} a^{4} - \frac{85}{288} a^{3} + \frac{101}{864} a^{2} + \frac{47}{144} a - \frac{15}{32}$, $\frac{1}{18144} a^{16} + \frac{1}{2592} a^{15} + \frac{17}{18144} a^{14} + \frac{47}{9072} a^{13} - \frac{47}{9072} a^{12} + \frac{1}{162} a^{11} - \frac{7}{864} a^{10} + \frac{275}{18144} a^{9} - \frac{233}{1512} a^{8} + \frac{3385}{18144} a^{7} + \frac{5189}{18144} a^{6} + \frac{3569}{9072} a^{5} + \frac{208}{567} a^{4} - \frac{277}{567} a^{3} + \frac{2173}{18144} a^{2} + \frac{247}{6048} a + \frac{127}{288}$, $\frac{1}{374958280948724928} a^{17} + \frac{1070167662205}{46869785118590616} a^{16} + \frac{16203048243209}{31246523412393744} a^{15} + \frac{57763497535813}{124986093649574976} a^{14} - \frac{80999297742191}{15623261706196872} a^{13} + \frac{359186389028993}{62493046824787488} a^{12} - \frac{707827622589761}{53565468706960704} a^{11} + \frac{51931093384085}{1802684043022716} a^{10} - \frac{2262116082516163}{53565468706960704} a^{9} + \frac{48002808807796657}{374958280948724928} a^{8} - \frac{28572450326939023}{62493046824787488} a^{7} + \frac{12035898482892715}{41662031216524992} a^{6} - \frac{22192828209559535}{62493046824787488} a^{5} - \frac{33477748078987}{85842097286796} a^{4} + \frac{12181551915328307}{53565468706960704} a^{3} + \frac{523417429258637}{26782734353480352} a^{2} + \frac{20718064685454953}{62493046824787488} a - \frac{2791804594347209}{5951718745217856}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 449668.225814 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $D_9$ |
| Character table for $D_9$ |
Intermediate fields
| \(\Q(\sqrt{-331}) \), 3.1.331.1 x3, 6.0.36264691.1, 9.1.768231214144.1 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.6.4.1 | $x^{6} + 3 x^{5} + 6 x^{4} + 3 x^{3} + 9 x + 9$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 331 | Data not computed | ||||||