Normalized defining polynomial
\( x^{18} - 3 x^{17} + 135 x^{16} - 397 x^{15} + 8433 x^{14} - 24849 x^{13} + 317736 x^{12} - 929568 x^{11} + 7949448 x^{10} - 22276859 x^{9} + 136802574 x^{8} - 340709811 x^{7} + 1588480509 x^{6} - 3151773927 x^{5} + 11675224038 x^{4} - 16134045101 x^{3} + 49541028015 x^{2} - 40252088898 x + 105164497817 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19451929844843151808873875967466301627=-\,3^{24}\cdot 7^{15}\cdot 29^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $117.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1827=3^{2}\cdot 7\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1827}(1,·)$, $\chi_{1827}(1219,·)$, $\chi_{1827}(202,·)$, $\chi_{1827}(1420,·)$, $\chi_{1827}(724,·)$, $\chi_{1827}(1045,·)$, $\chi_{1827}(88,·)$, $\chi_{1827}(985,·)$, $\chi_{1827}(1306,·)$, $\chi_{1827}(610,·)$, $\chi_{1827}(811,·)$, $\chi_{1827}(115,·)$, $\chi_{1827}(436,·)$, $\chi_{1827}(1333,·)$, $\chi_{1827}(1654,·)$, $\chi_{1827}(376,·)$, $\chi_{1827}(697,·)$, $\chi_{1827}(1594,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{673} a^{12} - \frac{258}{673} a^{11} + \frac{51}{673} a^{10} + \frac{145}{673} a^{9} + \frac{141}{673} a^{8} - \frac{240}{673} a^{7} - \frac{102}{673} a^{6} - \frac{24}{673} a^{5} + \frac{327}{673} a^{4} + \frac{286}{673} a^{3} + \frac{42}{673} a^{2} - \frac{46}{673} a + \frac{111}{673}$, $\frac{1}{673} a^{13} + \frac{114}{673} a^{11} - \frac{157}{673} a^{10} - \frac{137}{673} a^{9} - \frac{204}{673} a^{8} - \frac{106}{673} a^{7} - \frac{93}{673} a^{6} + \frac{192}{673} a^{5} - \frac{146}{673} a^{4} - \frac{200}{673} a^{3} + \frac{22}{673} a^{2} - \frac{316}{673} a - \frac{301}{673}$, $\frac{1}{673} a^{14} + \frac{316}{673} a^{11} + \frac{106}{673} a^{10} + \frac{91}{673} a^{9} - \frac{28}{673} a^{8} - \frac{326}{673} a^{7} - \frac{294}{673} a^{6} - \frac{102}{673} a^{5} + \frac{210}{673} a^{4} - \frac{278}{673} a^{3} + \frac{280}{673} a^{2} + \frac{232}{673} a + \frac{133}{673}$, $\frac{1}{673} a^{15} + \frac{201}{673} a^{11} + \frac{127}{673} a^{10} - \frac{84}{673} a^{9} + \frac{209}{673} a^{8} + \frac{170}{673} a^{7} - \frac{174}{673} a^{6} - \frac{282}{673} a^{5} + \frac{32}{673} a^{4} + \frac{86}{673} a^{3} - \frac{253}{673} a^{2} - \frac{137}{673} a - \frac{80}{673}$, $\frac{1}{47783} a^{16} - \frac{16}{47783} a^{15} - \frac{22}{47783} a^{14} - \frac{22}{47783} a^{13} - \frac{7}{47783} a^{12} - \frac{611}{47783} a^{11} + \frac{22721}{47783} a^{10} + \frac{3363}{47783} a^{9} + \frac{19039}{47783} a^{8} - \frac{8751}{47783} a^{7} + \frac{13388}{47783} a^{6} + \frac{21689}{47783} a^{5} + \frac{14275}{47783} a^{4} + \frac{9969}{47783} a^{3} + \frac{9394}{47783} a^{2} - \frac{2624}{47783} a + \frac{732}{47783}$, $\frac{1}{15059070084564531268168574244564034543701109262342045400013184370181} a^{17} - \frac{56485277526700154967369868704373368954232603105951168028399708}{15059070084564531268168574244564034543701109262342045400013184370181} a^{16} - \frac{1934875981724258816612118608249945553856094416407115483096873493}{15059070084564531268168574244564034543701109262342045400013184370181} a^{15} + \frac{8105408572385304111717645380495409030575322584874472596542069460}{15059070084564531268168574244564034543701109262342045400013184370181} a^{14} + \frac{5706105040872743235897276197579566468778644295696934444708794353}{15059070084564531268168574244564034543701109262342045400013184370181} a^{13} + \frac{3619085352778817807591503628622953471841947386370194844113472841}{15059070084564531268168574244564034543701109262342045400013184370181} a^{12} + \frac{2360612478632868230292830189821957423509336366831741981355321314336}{15059070084564531268168574244564034543701109262342045400013184370181} a^{11} + \frac{3168398630517582520042212684171581282948493304818158386190867864372}{15059070084564531268168574244564034543701109262342045400013184370181} a^{10} - \frac{6530009453265928324198567528541131604171661773246475282890470240461}{15059070084564531268168574244564034543701109262342045400013184370181} a^{9} - \frac{6644751131024374221626150789315054557171399036628907484335383235963}{15059070084564531268168574244564034543701109262342045400013184370181} a^{8} + \frac{3703387235701569064552947972909539324800472807931752452059120507579}{15059070084564531268168574244564034543701109262342045400013184370181} a^{7} + \frac{3203724553100512945782674456249767986278630716831775701285469211854}{15059070084564531268168574244564034543701109262342045400013184370181} a^{6} - \frac{6861465237574458073644759708130357827621615859376965064968081547561}{15059070084564531268168574244564034543701109262342045400013184370181} a^{5} - \frac{6615085671441351786433497445612249848683957625596573221216661142991}{15059070084564531268168574244564034543701109262342045400013184370181} a^{4} - \frac{71180097111855320442143781674113805464394552811738033892461852254}{212099578655838468565754566824845556953536750173831625352298371411} a^{3} - \frac{6584372278536511315334232059701476092219677707417776380288338081230}{15059070084564531268168574244564034543701109262342045400013184370181} a^{2} - \frac{6532512396178871259235946643794183384870188501168219657486588028512}{15059070084564531268168574244564034543701109262342045400013184370181} a - \frac{4633619116548272135716587072082648643431850965661836884488032907657}{15059070084564531268168574244564034543701109262342045400013184370181}$
Class group and class number
$C_{2}\times C_{18}\times C_{51948}$, which has order $1870128$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54408.48888868202 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-203}) \), \(\Q(\zeta_{9})^+\), 3.3.3969.2, \(\Q(\zeta_{7})^+\), 3.3.3969.1, 6.0.54885566547.7, 6.0.2689392760803.4, 6.0.409905923.1, 6.0.2689392760803.3, 9.9.62523502209.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $29$ | 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 29.6.3.1 | $x^{6} - 58 x^{4} + 841 x^{2} - 219501$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |