Normalized defining polynomial
\( x^{18} - 6 x^{17} + 21 x^{16} - 56 x^{15} + 207 x^{14} - 702 x^{13} + 1563 x^{12} - 1116 x^{11} - 3756 x^{10} + 12472 x^{9} - 8532 x^{8} - 18192 x^{7} + 49264 x^{6} - 36096 x^{5} - 192 x^{4} - 5376 x^{3} + 63744 x^{2} - 73728 x + 24576 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-19432680584168369411623747584=-\,2^{27}\cdot 3^{21}\cdot 7^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{32} a^{9} - \frac{1}{16} a^{7} + \frac{3}{32} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{10} - \frac{1}{16} a^{8} + \frac{3}{32} a^{6} + \frac{1}{8} a^{5} + \frac{1}{16} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{11} - \frac{1}{32} a^{7} - \frac{1}{8} a^{6} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{192} a^{12} - \frac{1}{64} a^{11} + \frac{1}{96} a^{9} - \frac{3}{64} a^{8} + \frac{1}{64} a^{7} - \frac{5}{48} a^{6} + \frac{1}{32} a^{5} - \frac{1}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{384} a^{13} - \frac{1}{384} a^{12} - \frac{1}{96} a^{10} - \frac{5}{384} a^{9} - \frac{1}{128} a^{8} - \frac{5}{96} a^{7} - \frac{7}{96} a^{6} + \frac{1}{16} a^{5} + \frac{1}{32} a^{4} + \frac{3}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{768} a^{14} - \frac{1}{768} a^{13} - \frac{1}{192} a^{11} + \frac{7}{768} a^{10} - \frac{1}{256} a^{9} + \frac{1}{192} a^{8} + \frac{5}{192} a^{7} + \frac{1}{64} a^{6} - \frac{15}{64} a^{5} - \frac{1}{4} a^{4} - \frac{1}{16} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{27648} a^{15} - \frac{1}{2304} a^{14} + \frac{11}{9216} a^{13} - \frac{1}{512} a^{12} - \frac{131}{9216} a^{11} - \frac{7}{1152} a^{10} - \frac{67}{9216} a^{9} - \frac{245}{4608} a^{8} + \frac{67}{2304} a^{7} + \frac{103}{1728} a^{6} + \frac{473}{2304} a^{5} + \frac{259}{1152} a^{4} - \frac{61}{192} a^{3} + \frac{67}{288} a^{2} - \frac{1}{2} a - \frac{4}{9}$, $\frac{1}{7520256} a^{16} + \frac{19}{3760128} a^{15} + \frac{433}{835584} a^{14} - \frac{587}{626688} a^{13} - \frac{503}{2506752} a^{12} + \frac{547}{417792} a^{11} - \frac{36707}{2506752} a^{10} + \frac{83}{13056} a^{9} + \frac{18721}{313344} a^{8} - \frac{26629}{940032} a^{7} - \frac{104485}{1880064} a^{6} + \frac{857}{26112} a^{5} + \frac{281}{2304} a^{4} - \frac{83}{19584} a^{3} + \frac{18739}{39168} a^{2} - \frac{127}{612} a + \frac{233}{1224}$, $\frac{1}{1031692305273716736} a^{17} - \frac{3212351885}{128961538159214592} a^{16} + \frac{335512504615}{54299595014406144} a^{15} + \frac{27661909789783}{57316239181873152} a^{14} + \frac{13391589181539}{12736942040416256} a^{13} + \frac{66826276623271}{28658119590936576} a^{12} + \frac{107063721558821}{26453648853172224} a^{11} - \frac{86136648116329}{9049932502401024} a^{10} + \frac{174252413177105}{42987179386404864} a^{9} + \frac{326782546772885}{9920118319939584} a^{8} - \frac{590070880878281}{15171945665789952} a^{7} - \frac{4651895260305625}{128961538159214592} a^{6} - \frac{37222115383303}{447783118608384} a^{5} - \frac{186795035149733}{1343349355825152} a^{4} + \frac{2462970103911079}{5373397423300608} a^{3} - \frac{152345642210821}{2686698711650304} a^{2} + \frac{68821997129657}{167918669478144} a - \frac{28163232783535}{83959334739072}$
Class group and class number
$C_{6}$, which has order $6$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 674206540.477 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 18 |
| The 6 conjugacy class representatives for $C_3^2 : C_2$ |
| Character table for $C_3^2 : C_2$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), 3.1.1176.1 x3, 3.1.10584.2 x3, 3.1.10584.1 x3, 3.1.216.1 x3, 6.0.33191424.2, 6.0.2688505344.3, 6.0.2688505344.2, 6.0.1119744.1, 9.1.28455140560896.4 x9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| 2.2.3.2 | $x^{2} + 6$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ | |
| $3$ | 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| 3.6.7.1 | $x^{6} + 6 x^{2} + 6$ | $6$ | $1$ | $7$ | $S_3$ | $[3/2]_{2}$ | |
| $7$ | 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |