Normalized defining polynomial
\( x^{18} - 9 x^{17} + 54 x^{16} - 212 x^{15} + 1032 x^{14} - 4572 x^{13} + 20478 x^{12} - 67602 x^{11} + 236595 x^{10} - 726875 x^{9} + 2543820 x^{8} - 6888426 x^{7} + 19295616 x^{6} - 41853396 x^{5} + 109772868 x^{4} - 221288668 x^{3} + 489750240 x^{2} - 607457328 x + 728867672 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1938499160566797308196011628480688128=-\,2^{12}\cdot 3^{18}\cdot 7^{14}\cdot 23^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{6}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{7}$, $\frac{1}{52} a^{16} + \frac{5}{52} a^{15} + \frac{1}{13} a^{14} - \frac{1}{26} a^{13} + \frac{1}{13} a^{12} - \frac{3}{13} a^{11} - \frac{2}{13} a^{10} - \frac{7}{52} a^{8} - \frac{1}{4} a^{7} - \frac{3}{13} a^{6} + \frac{1}{26} a^{5} + \frac{7}{26} a^{4} + \frac{2}{13} a^{3} - \frac{6}{13} a^{2} - \frac{3}{13} a$, $\frac{1}{124894122261618758956204539903724263437887598000520884} a^{17} - \frac{63320090755100353869175304515318407403588839075513}{62447061130809379478102269951862131718943799000260442} a^{16} + \frac{7685500602554512148376343464290715789176854736859769}{124894122261618758956204539903724263437887598000520884} a^{15} + \frac{2329570898304397181613982783029568265575025658011164}{31223530565404689739051134975931065859471899500130221} a^{14} - \frac{6724894747572518239247348557034274987170813480007477}{62447061130809379478102269951862131718943799000260442} a^{13} + \frac{5186762327010323766898177691251797710715679807436471}{124894122261618758956204539903724263437887598000520884} a^{12} - \frac{5532776833692558359617604734736006162462545361166169}{31223530565404689739051134975931065859471899500130221} a^{11} - \frac{13558826472518607252733991590285749383221676430883469}{124894122261618758956204539903724263437887598000520884} a^{10} + \frac{11658932142600614399087512824969925818687907731755799}{124894122261618758956204539903724263437887598000520884} a^{9} - \frac{3376377166982835137011131525781967345462902257134679}{124894122261618758956204539903724263437887598000520884} a^{8} - \frac{12013777997735982980492715257942241218530620295783245}{124894122261618758956204539903724263437887598000520884} a^{7} - \frac{28730320870020503795423758435423423588636050244373275}{124894122261618758956204539903724263437887598000520884} a^{6} + \frac{4066071454955591483307597956132959583317149948692541}{62447061130809379478102269951862131718943799000260442} a^{5} - \frac{12709421413931887201106597531663523710796549571255613}{62447061130809379478102269951862131718943799000260442} a^{4} - \frac{9967998145057095246059080915234579977888356770578247}{31223530565404689739051134975931065859471899500130221} a^{3} + \frac{7863513301389182182091249726989098443805027611290987}{31223530565404689739051134975931065859471899500130221} a^{2} + \frac{9293381492368654723679656372035887473559130883644520}{31223530565404689739051134975931065859471899500130221} a + \frac{390707692680820586272245338164374539201105039580741}{2401810043492668441465471921225466604574761500010017}$
Class group and class number
$C_{3}\times C_{9}\times C_{9}\times C_{1026}$, which has order $249318$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 296124.35954857944 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.3.756.1, \(\Q(\zeta_{7})^+\), 6.0.6953878512.6, 6.0.29212967.1, 9.9.1037426999616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.9.9.1 | $x^{9} + 54 x^{5} + 27 x^{3} + 189$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ |
| 3.9.9.1 | $x^{9} + 54 x^{5} + 27 x^{3} + 189$ | $3$ | $3$ | $9$ | $S_3\times C_3$ | $[3/2]_{2}^{3}$ | |
| $7$ | 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 7.12.10.1 | $x^{12} - 70 x^{6} + 35721$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |