Normalized defining polynomial
\( x^{18} + 798 x^{16} + 242991 x^{14} + 38032414 x^{12} + 3369081387 x^{10} + 171403421490 x^{8} + 4744178127122 x^{6} + 59920722735636 x^{4} + 179088217142121 x^{2} + 32131593339013 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1926335160286020785768280733167128818936151392124928=-\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $706.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(3055,·)$, $\chi_{4788}(4489,·)$, $\chi_{4788}(1039,·)$, $\chi_{4788}(3217,·)$, $\chi_{4788}(2803,·)$, $\chi_{4788}(559,·)$, $\chi_{4788}(2959,·)$, $\chi_{4788}(1453,·)$, $\chi_{4788}(1447,·)$, $\chi_{4788}(1063,·)$, $\chi_{4788}(2221,·)$, $\chi_{4788}(4591,·)$, $\chi_{4788}(1201,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(439,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(1213,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{49} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{49} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{49} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{49} a^{12}$, $\frac{1}{70217} a^{13} - \frac{107}{70217} a^{11} - \frac{257}{70217} a^{9} + \frac{454}{10031} a^{7} + \frac{2963}{10031} a^{5} - \frac{3341}{10031} a^{3} + \frac{669}{1433} a$, $\frac{1}{15237089} a^{14} - \frac{10251}{2176727} a^{12} + \frac{14498}{2176727} a^{10} + \frac{17650}{2176727} a^{8} - \frac{15135}{310961} a^{6} - \frac{32208}{310961} a^{4} + \frac{26463}{310961} a^{2} + \frac{10}{31}$, $\frac{1}{106659623} a^{15} + \frac{72}{15237089} a^{13} - \frac{9762}{2176727} a^{11} + \frac{118865}{15237089} a^{9} - \frac{126177}{2176727} a^{7} + \frac{43254}{310961} a^{5} - \frac{523508}{2176727} a^{3} + \frac{11325}{44423} a$, $\frac{1}{105479394016381591553811362016058928345309} a^{16} - \frac{149783453609446110698079597474151}{15068484859483084507687337430865561192187} a^{14} - \frac{17382808986437443052396570046958707948}{2152640694211869215383905347266508741741} a^{12} + \frac{131501526305399987355631846101880335862}{15068484859483084507687337430865561192187} a^{10} + \frac{6502060092119586371949806728656996167}{2152640694211869215383905347266508741741} a^{8} + \frac{7679910957949550178246004714083578999}{307520099173124173626272192466644105963} a^{6} - \frac{697928241264464814096563068921487225765}{2152640694211869215383905347266508741741} a^{4} - \frac{2493418779595896760448390160213754206}{6275920391288248441352493723809063387} a^{2} + \frac{1357563543318792239921941221406605}{4379567614297451808340888851227539}$, $\frac{1}{738355758114671140876679534112412498417163} a^{17} - \frac{149783453609446110698079597474151}{105479394016381591553811362016058928345309} a^{15} - \frac{30962098590938987749968418395198430}{15068484859483084507687337430865561192187} a^{13} + \frac{665852570925832082491303694840152369252}{105479394016381591553811362016058928345309} a^{11} + \frac{72016012034395167972921163054169752068}{15068484859483084507687337430865561192187} a^{9} - \frac{110104180460966118755273860050829854867}{2152640694211869215383905347266508741741} a^{7} - \frac{3061948766380400541010041416592493137341}{15068484859483084507687337430865561192187} a^{5} + \frac{16351950957590753185444589921129094099}{307520099173124173626272192466644105963} a^{3} + \frac{2285005923463150668709387600716230011}{6275920391288248441352493723809063387} a$
Class group and class number
$C_{2}\times C_{2}\times C_{12}\times C_{33681324}$, which has order $1616703552$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1305382696.1857498 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-133}) \), 3.3.361.1, 6.0.54355325248.1, 9.9.1061871841310654257569.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.2 | $x^{6} - 7$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19 | Data not computed | ||||||