Normalized defining polynomial
\( x^{18} + 798 x^{16} + 242991 x^{14} + 36093274 x^{12} + 2831149587 x^{10} + 119120371902 x^{8} + 2538023959562 x^{6} + 22440538637328 x^{4} + 39871239158709 x^{2} + 18624704126077 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1926335160286020785768280733167128818936151392124928=-\,2^{18}\cdot 3^{24}\cdot 7^{15}\cdot 19^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $706.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4788=2^{2}\cdot 3^{2}\cdot 7\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4788}(1,·)$, $\chi_{4788}(2635,·)$, $\chi_{4788}(2893,·)$, $\chi_{4788}(1261,·)$, $\chi_{4788}(1363,·)$, $\chi_{4788}(4591,·)$, $\chi_{4788}(25,·)$, $\chi_{4788}(4399,·)$, $\chi_{4788}(4639,·)$, $\chi_{4788}(1063,·)$, $\chi_{4788}(3049,·)$, $\chi_{4788}(4651,·)$, $\chi_{4788}(2797,·)$, $\chi_{4788}(3631,·)$, $\chi_{4788}(625,·)$, $\chi_{4788}(4405,·)$, $\chi_{4788}(505,·)$, $\chi_{4788}(559,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{49} a^{8} - \frac{2}{7} a^{2}$, $\frac{1}{49} a^{9} - \frac{2}{7} a^{3}$, $\frac{1}{49} a^{10} - \frac{2}{7} a^{4}$, $\frac{1}{49} a^{11} - \frac{2}{7} a^{5}$, $\frac{1}{49} a^{12}$, $\frac{1}{53459} a^{13} - \frac{1}{53459} a^{11} + \frac{452}{53459} a^{9} - \frac{349}{7637} a^{7} + \frac{3383}{7637} a^{5} + \frac{1462}{7637} a^{3} + \frac{124}{1091} a$, $\frac{1}{374213} a^{14} - \frac{156}{53459} a^{12} - \frac{403}{53459} a^{10} - \frac{349}{53459} a^{8} - \frac{296}{7637} a^{6} + \frac{3326}{7637} a^{4} - \frac{3149}{7637} a^{2}$, $\frac{1}{2619491} a^{15} + \frac{2}{374213} a^{13} - \frac{236}{53459} a^{11} + \frac{2334}{374213} a^{9} - \frac{3070}{53459} a^{7} + \frac{2958}{7637} a^{5} - \frac{24174}{53459} a^{3} + \frac{461}{1091} a$, $\frac{1}{15008775345598724326652728179380524624749407} a^{16} + \frac{2332210345541489206789494876558706100}{2144110763656960618093246882768646374964201} a^{14} + \frac{643763842319735249071899167712117961148}{306301537665280088299035268966949482137743} a^{12} + \frac{3414747621453336895204572309828028909125}{2144110763656960618093246882768646374964201} a^{10} + \frac{2896705768648139872726587449748247105396}{306301537665280088299035268966949482137743} a^{8} - \frac{284919036529505083996383409952371207393}{43757362523611441185576466995278497448249} a^{6} - \frac{975314537574196583550783623458381905434}{2973801336556117362126556009387859049881} a^{4} + \frac{167146003725475155532003927579073416194}{893007398441049820113805448883234641801} a^{2} - \frac{276953184623673752103662918496104222}{818521905078872429068565947647327811}$, $\frac{1}{105061427419191070286569097255663672373245849} a^{17} + \frac{2332210345541489206789494876558706100}{15008775345598724326652728179380524624749407} a^{15} - \frac{15146291268757056328296420143980926707}{2144110763656960618093246882768646374964201} a^{13} - \frac{123244969014261540523723459561014771220637}{15008775345598724326652728179380524624749407} a^{11} + \frac{11370863051929706130873450705741031932679}{2144110763656960618093246882768646374964201} a^{9} + \frac{17138956756884452313586179917616295905364}{306301537665280088299035268966949482137743} a^{7} - \frac{1228031189063645341966409504051902990071}{20816609355892821534885892065715013349167} a^{5} + \frac{1075073485089176886952073843126423887282}{43757362523611441185576466995278497448249} a^{3} - \frac{307313843999657268687283817116366175893}{893007398441049820113805448883234641801} a$
Class group and class number
$C_{2}\times C_{2}\times C_{12}\times C_{30537876}$, which has order $1465818048$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 824118633.8968437 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 18 |
| The 18 conjugacy class representatives for $C_{18}$ |
| Character table for $C_{18}$ |
Intermediate fields
| \(\Q(\sqrt{-133}) \), 3.3.361.1, 6.0.54355325248.1, 9.9.1061871841310654257569.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $18$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}$ | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | $18$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.3 | $x^{6} - 112$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 19 | Data not computed | ||||||