Normalized defining polynomial
\( x^{18} - 4 x^{17} + 14 x^{15} - 24 x^{13} - 19 x^{12} + 20 x^{11} + 44 x^{10} + 20 x^{9} - 70 x^{8} - 20 x^{7} + 155 x^{6} - 100 x^{5} + 20 x^{4} + 14 x^{3} - 6 x^{2} + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-191102976000000000000000=-\,2^{33}\cdot 3^{6}\cdot 5^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{23} a^{15} - \frac{3}{23} a^{13} + \frac{9}{23} a^{12} - \frac{1}{23} a^{11} - \frac{7}{23} a^{10} - \frac{4}{23} a^{9} - \frac{5}{23} a^{8} + \frac{10}{23} a^{7} + \frac{1}{23} a^{6} + \frac{7}{23} a^{5} + \frac{6}{23} a^{4} + \frac{4}{23} a^{3} - \frac{7}{23} a^{2} - \frac{1}{23} a - \frac{10}{23}$, $\frac{1}{23} a^{16} - \frac{3}{23} a^{14} + \frac{9}{23} a^{13} - \frac{1}{23} a^{12} - \frac{7}{23} a^{11} - \frac{4}{23} a^{10} - \frac{5}{23} a^{9} + \frac{10}{23} a^{8} + \frac{1}{23} a^{7} + \frac{7}{23} a^{6} + \frac{6}{23} a^{5} + \frac{4}{23} a^{4} - \frac{7}{23} a^{3} - \frac{1}{23} a^{2} - \frac{10}{23} a$, $\frac{1}{1111430110003} a^{17} - \frac{13638665708}{1111430110003} a^{16} - \frac{18586181325}{1111430110003} a^{15} + \frac{226495970633}{1111430110003} a^{14} + \frac{503913187900}{1111430110003} a^{13} - \frac{321247456365}{1111430110003} a^{12} + \frac{471921347278}{1111430110003} a^{11} - \frac{154668505774}{1111430110003} a^{10} + \frac{195948929056}{1111430110003} a^{9} - \frac{273164059110}{1111430110003} a^{8} + \frac{183209279501}{1111430110003} a^{7} + \frac{183935905997}{1111430110003} a^{6} - \frac{420815738415}{1111430110003} a^{5} - \frac{235668509668}{1111430110003} a^{4} + \frac{555539801052}{1111430110003} a^{3} - \frac{8842860716}{38325176207} a^{2} + \frac{374180109884}{1111430110003} a - \frac{287305224756}{1111430110003}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 18590.202593393617 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_3^2$ (as 18T29):
| A solvable group of order 72 |
| The 18 conjugacy class representatives for $C_2\times S_3^2$ |
| Character table for $C_2\times S_3^2$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), 3.1.200.1, 3.1.300.1, 6.0.1600000.1, 6.0.57600000.1, 9.1.3456000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.11.13 | $x^{6} + 10$ | $6$ | $1$ | $11$ | $D_{6}$ | $[3]_{3}^{2}$ |
| 2.12.22.79 | $x^{12} + 2 x^{10} + 4 x^{8} + 4 x^{6} + 4 x^{4} + 4$ | $6$ | $2$ | $22$ | $D_6$ | $[3]_{3}^{2}$ | |
| $3$ | 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
| 3.12.6.2 | $x^{12} + 108 x^{6} - 243 x^{2} + 2916$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $5$ | 5.6.5.2 | $x^{6} + 10$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ |