Normalized defining polynomial
\( x^{18} - 2 x^{17} - 2 x^{16} + 31 x^{15} - 24 x^{14} - 91 x^{13} + 259 x^{12} + 6 x^{11} - 586 x^{10} + 373 x^{9} + 529 x^{8} + 213 x^{7} - 2352 x^{6} + 1533 x^{5} + 3474 x^{4} - 7270 x^{3} + 5988 x^{2} - 2458 x + 421 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-189763856901384950886247=-\,7^{17}\cdot 13^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{281} a^{16} - \frac{104}{281} a^{15} - \frac{12}{281} a^{14} + \frac{73}{281} a^{13} - \frac{41}{281} a^{12} + \frac{41}{281} a^{11} + \frac{80}{281} a^{10} - \frac{74}{281} a^{9} - \frac{40}{281} a^{8} + \frac{13}{281} a^{7} - \frac{106}{281} a^{6} + \frac{3}{281} a^{5} - \frac{26}{281} a^{4} - \frac{131}{281} a^{3} + \frac{102}{281} a^{2} + \frac{37}{281} a - \frac{96}{281}$, $\frac{1}{1173254722973313716373877} a^{17} - \frac{675413422919748185190}{1173254722973313716373877} a^{16} - \frac{403479096640902310219665}{1173254722973313716373877} a^{15} - \frac{277497479974840650635642}{1173254722973313716373877} a^{14} - \frac{245992867974139512361784}{1173254722973313716373877} a^{13} + \frac{61726025453922707121171}{1173254722973313716373877} a^{12} - \frac{262707826410628155333850}{1173254722973313716373877} a^{11} - \frac{176973769115643526435517}{1173254722973313716373877} a^{10} - \frac{381669271086923433949166}{1173254722973313716373877} a^{9} - \frac{195189430822730080707237}{1173254722973313716373877} a^{8} + \frac{321510283324791758689733}{1173254722973313716373877} a^{7} - \frac{253297213964833257904371}{1173254722973313716373877} a^{6} - \frac{114048136713588229306587}{1173254722973313716373877} a^{5} + \frac{335890794784597605354875}{1173254722973313716373877} a^{4} + \frac{341134888049748248110029}{1173254722973313716373877} a^{3} + \frac{424723996960910138226321}{1173254722973313716373877} a^{2} + \frac{7498053323431526937681}{1173254722973313716373877} a + \frac{308993523260833349445615}{1173254722973313716373877}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{2544108032611958202284}{40457059412872886771513} a^{17} + \frac{3871203719646744047979}{40457059412872886771513} a^{16} + \frac{7072424679893812006966}{40457059412872886771513} a^{15} - \frac{75680469856564288359190}{40457059412872886771513} a^{14} + \frac{24464196631149971900818}{40457059412872886771513} a^{13} + \frac{247001869987483801768213}{40457059412872886771513} a^{12} - \frac{541658120904277198840609}{40457059412872886771513} a^{11} - \frac{287578220970904329044373}{40457059412872886771513} a^{10} + \frac{1377240764222741705324960}{40457059412872886771513} a^{9} - \frac{272657816027231189743704}{40457059412872886771513} a^{8} - \frac{1543976052306633268970578}{40457059412872886771513} a^{7} - \frac{1291631756108964218465412}{40457059412872886771513} a^{6} + \frac{5442934761572288632844239}{40457059412872886771513} a^{5} - \frac{1209077575384908804865726}{40457059412872886771513} a^{4} - \frac{9683468428079253771891191}{40457059412872886771513} a^{3} + \frac{13876744204672193332444380}{40457059412872886771513} a^{2} - \frac{8135302318489322144843390}{40457059412872886771513} a + \frac{1866344539016255139380778}{40457059412872886771513} \) (order $14$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 89545.2892541 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_9:C_3$ (as 18T14):
| A solvable group of order 54 |
| The 22 conjugacy class representatives for $C_2\times C_9:C_3$ |
| Character table for $C_2\times C_9:C_3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 9.9.164648481361.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.9.0.1}{9} }^{2}$ | $18$ | $18$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }^{2}$ | R | $18$ | $18$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/37.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.6.4.2 | $x^{6} - 13 x^{3} + 338$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 13.6.4.1 | $x^{6} + 39 x^{3} + 676$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 13.6.0.1 | $x^{6} + x^{2} - 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |