Normalized defining polynomial
\( x^{18} - 6 x^{17} + 31 x^{16} - 124 x^{15} + 403 x^{14} - 1144 x^{13} + 2830 x^{12} - 6420 x^{11} + 13956 x^{10} - 27780 x^{9} + 51861 x^{8} - 91584 x^{7} + 173635 x^{6} - 319924 x^{5} + 597495 x^{4} - 843778 x^{3} + 865576 x^{2} - 666536 x + 330469 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-188521017135728366078671192064=-\,2^{24}\cdot 37^{6}\cdot 16361^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $42.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 16361$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{1522243884622274401673032584949394215062095453179} a^{17} + \frac{360083274525102298542265481283979081248035471313}{1522243884622274401673032584949394215062095453179} a^{16} + \frac{604284051920717298681143432227466447834736669211}{1522243884622274401673032584949394215062095453179} a^{15} - \frac{152411124228837933766459882157935338018071307552}{1522243884622274401673032584949394215062095453179} a^{14} - \frac{424361446321529387807955284028190196837919224759}{1522243884622274401673032584949394215062095453179} a^{13} + \frac{181181729228068618625586940372627466404441768127}{1522243884622274401673032584949394215062095453179} a^{12} + \frac{116980366272743436232611536178257700335556265491}{1522243884622274401673032584949394215062095453179} a^{11} + \frac{640712280255986975839810960522909352906350185298}{1522243884622274401673032584949394215062095453179} a^{10} - \frac{413852250021798898629357152349917827224117567185}{1522243884622274401673032584949394215062095453179} a^{9} - \frac{647463991471669160538380212026661039448071080795}{1522243884622274401673032584949394215062095453179} a^{8} - \frac{433676421134603048030692621975207290099518019745}{1522243884622274401673032584949394215062095453179} a^{7} - \frac{158120398891001201824878290737671311985660390241}{1522243884622274401673032584949394215062095453179} a^{6} + \frac{22248020847117050643023415211747904795807748673}{1522243884622274401673032584949394215062095453179} a^{5} - \frac{747106293734798524075007059296654259599931422629}{1522243884622274401673032584949394215062095453179} a^{4} - \frac{279168047685405777109329510221846364853809976051}{1522243884622274401673032584949394215062095453179} a^{3} - \frac{25199094463175892263879469310433202509128925822}{1522243884622274401673032584949394215062095453179} a^{2} - \frac{20035896464955940436582108645624495716189555116}{80118099190646021140685925523652327108531339641} a + \frac{177454237492534343386456525560704344212441244982}{1522243884622274401673032584949394215062095453179}$
Class group and class number
$C_{4}\times C_{68}$, which has order $272$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45363.6836572 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2592 |
| The 44 conjugacy class representatives for t18n394 |
| Character table for t18n394 is not computed |
Intermediate fields
| 3.3.148.1, 6.0.5733941504.1, 9.9.53038958912.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | $18$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 37.4.2.1 | $x^{4} + 333 x^{2} + 34225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 16361 | Data not computed | ||||||