Normalized defining polynomial
\( x^{18} + 19 x^{16} + 131 x^{14} + 388 x^{12} + 390 x^{10} - 269 x^{8} - 477 x^{6} + 723 x^{4} + 1440 x^{2} + 625 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-188218197677432897536000000=-\,2^{24}\cdot 5^{6}\cdot 23^{4}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $28.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 23, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{4} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{2} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{10} + \frac{1}{16} a^{8} - \frac{1}{8} a^{6} + \frac{3}{8} a^{4} + \frac{1}{4} a^{2} - \frac{7}{16}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{11} + \frac{1}{16} a^{9} - \frac{1}{8} a^{7} + \frac{3}{8} a^{5} + \frac{1}{4} a^{3} - \frac{7}{16} a$, $\frac{1}{16} a^{14} + \frac{1}{16} a^{10} - \frac{1}{8} a^{6} + \frac{1}{4} a^{4} - \frac{3}{16} a^{2} + \frac{1}{8}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{14} - \frac{1}{32} a^{12} - \frac{3}{32} a^{11} + \frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{7} - \frac{1}{8} a^{5} + \frac{1}{16} a^{4} + \frac{1}{32} a^{3} - \frac{1}{32} a^{2} - \frac{1}{16} a + \frac{1}{32}$, $\frac{1}{58720} a^{16} - \frac{401}{58720} a^{14} - \frac{1}{32} a^{13} + \frac{783}{29360} a^{12} - \frac{1}{16} a^{11} - \frac{5907}{58720} a^{10} - \frac{1}{32} a^{9} - \frac{285}{11744} a^{8} - \frac{1}{16} a^{7} + \frac{58}{1835} a^{6} - \frac{1}{16} a^{5} + \frac{5383}{58720} a^{4} - \frac{10427}{58720} a^{2} - \frac{1}{32} a - \frac{5745}{11744}$, $\frac{1}{293600} a^{17} + \frac{3269}{293600} a^{15} - \frac{1}{32} a^{14} + \frac{4453}{146800} a^{13} - \frac{2237}{293600} a^{11} + \frac{3}{32} a^{10} + \frac{1183}{58720} a^{9} - \frac{8711}{73400} a^{7} + \frac{1}{16} a^{6} - \frac{97377}{293600} a^{5} + \frac{1}{8} a^{4} - \frac{65477}{293600} a^{3} - \frac{1}{32} a^{2} - \frac{26297}{58720} a + \frac{1}{16}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 260551.446568 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 82944 |
| The 80 conjugacy class representatives for t18n782 are not computed |
| Character table for t18n782 is not computed |
Intermediate fields
| 3.3.148.1, 9.5.42872699200.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 18 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $18$ | R | $18$ | $18$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/41.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | $18$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.6.0.1 | $x^{6} - x + 15$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 23.8.4.1 | $x^{8} + 11638 x^{4} - 12167 x^{2} + 33860761$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 37.6.3.1 | $x^{6} - 74 x^{4} + 1369 x^{2} - 202612$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |