Normalized defining polynomial
\( x^{18} - 6 x^{17} + 117 x^{16} - 578 x^{15} + 6156 x^{14} - 24564 x^{13} + 180572 x^{12} - 588492 x^{11} + 3260457 x^{10} - 8367384 x^{9} + 38364819 x^{8} - 74876916 x^{7} + 289649625 x^{6} - 402034464 x^{5} + 1622202279 x^{4} - 656223070 x^{3} + 7631428449 x^{2} + 1517303154 x + 14079582973 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1879387730226102112759375150760179531776=-\,2^{18}\cdot 3^{27}\cdot 7^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3276=2^{2}\cdot 3^{2}\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3276}(1,·)$, $\chi_{3276}(1093,·)$, $\chi_{3276}(2185,·)$, $\chi_{3276}(1847,·)$, $\chi_{3276}(1933,·)$, $\chi_{3276}(3025,·)$, $\chi_{3276}(1595,·)$, $\chi_{3276}(419,·)$, $\chi_{3276}(1511,·)$, $\chi_{3276}(2603,·)$, $\chi_{3276}(841,·)$, $\chi_{3276}(755,·)$, $\chi_{3276}(757,·)$, $\chi_{3276}(503,·)$, $\chi_{3276}(1849,·)$, $\chi_{3276}(2939,·)$, $\chi_{3276}(2941,·)$, $\chi_{3276}(2687,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{2}{7} a^{5} - \frac{1}{7} a^{3} - \frac{3}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{7} + \frac{3}{7} a^{5} - \frac{1}{7} a^{4} + \frac{2}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{2}{7}$, $\frac{1}{14} a^{8} - \frac{1}{7} a^{5} - \frac{5}{14} a^{4} - \frac{1}{7} a^{3} + \frac{5}{14} a^{2} + \frac{3}{7} a - \frac{3}{14}$, $\frac{1}{14} a^{9} + \frac{5}{14} a^{5} - \frac{1}{7} a^{4} + \frac{3}{14} a^{3} - \frac{1}{14} a + \frac{1}{7}$, $\frac{1}{14} a^{10} - \frac{1}{14} a^{6} - \frac{2}{7} a^{5} + \frac{3}{14} a^{4} + \frac{3}{7} a^{3} + \frac{3}{14} a^{2} - \frac{2}{7} a - \frac{3}{7}$, $\frac{1}{14} a^{11} - \frac{1}{14} a^{7} - \frac{5}{14} a^{5} + \frac{3}{7} a^{4} - \frac{1}{14} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a + \frac{2}{7}$, $\frac{1}{98} a^{12} + \frac{3}{98} a^{11} - \frac{3}{98} a^{10} - \frac{1}{49} a^{9} - \frac{1}{49} a^{8} - \frac{1}{14} a^{7} + \frac{3}{49} a^{6} - \frac{47}{98} a^{5} - \frac{1}{14} a^{4} + \frac{13}{98} a^{3} + \frac{15}{49} a^{2} - \frac{13}{49} a + \frac{43}{98}$, $\frac{1}{98} a^{13} + \frac{1}{49} a^{11} - \frac{3}{98} a^{9} - \frac{1}{98} a^{8} - \frac{1}{98} a^{7} - \frac{1}{49} a^{6} + \frac{1}{98} a^{5} + \frac{27}{98} a^{4} + \frac{13}{49} a^{3} + \frac{31}{98} a^{2} + \frac{22}{49} a - \frac{17}{98}$, $\frac{1}{98} a^{14} + \frac{1}{98} a^{11} + \frac{3}{98} a^{10} + \frac{3}{98} a^{9} + \frac{3}{98} a^{8} + \frac{5}{98} a^{7} + \frac{3}{98} a^{6} - \frac{20}{49} a^{5} - \frac{8}{49} a^{4} - \frac{8}{49} a^{3} + \frac{13}{49} a^{2} + \frac{5}{14} a - \frac{22}{49}$, $\frac{1}{98} a^{15} - \frac{1}{98} a^{10} - \frac{1}{49} a^{9} - \frac{2}{49} a^{7} + \frac{3}{98} a^{6} + \frac{5}{49} a^{5} + \frac{33}{98} a^{4} - \frac{4}{49} a^{3} - \frac{9}{98} a^{2} - \frac{25}{98} a + \frac{10}{49}$, $\frac{1}{84049626348430617691108852} a^{16} - \frac{84896745871827108355287}{21012406587107654422777213} a^{15} - \frac{98569071697254826570734}{21012406587107654422777213} a^{14} + \frac{130492929329390521702203}{42024813174215308845554426} a^{13} + \frac{136970672361335377936387}{42024813174215308845554426} a^{12} + \frac{1324677370312512050085079}{42024813174215308845554426} a^{11} + \frac{27421661347292329921245}{3001772369586807774682459} a^{10} - \frac{553121160946025671024745}{21012406587107654422777213} a^{9} - \frac{221690581964769277828523}{84049626348430617691108852} a^{8} + \frac{207575908102073950151084}{21012406587107654422777213} a^{7} + \frac{176310392137402198291208}{3001772369586807774682459} a^{6} - \frac{2958886292607534013912879}{6003544739173615549364918} a^{5} + \frac{16027053611097957550342867}{84049626348430617691108852} a^{4} + \frac{8675004182144761116482758}{21012406587107654422777213} a^{3} - \frac{6891106946874981180575587}{42024813174215308845554426} a^{2} + \frac{19402231194682801918628241}{42024813174215308845554426} a - \frac{15133420929218777100916237}{84049626348430617691108852}$, $\frac{1}{199934848462784138231435870463664214447284} a^{17} - \frac{210484013931830}{49983712115696034557858967615916053611821} a^{16} - \frac{144486201328292686166505842316133100821}{49983712115696034557858967615916053611821} a^{15} - \frac{22327992129140357974153956065497920885}{49983712115696034557858967615916053611821} a^{14} - \frac{29242404837190202279892715025531223110}{7140530302242290651122709659416579087403} a^{13} + \frac{113043787992668005236465791226784771331}{99967424231392069115717935231832107223642} a^{12} + \frac{138820486659602998825272229777800093905}{99967424231392069115717935231832107223642} a^{11} + \frac{1935285035111075017546674512430628063725}{99967424231392069115717935231832107223642} a^{10} - \frac{6117526626660654282016893430243390537327}{199934848462784138231435870463664214447284} a^{9} - \frac{55628165090980523039825625556144629430}{7140530302242290651122709659416579087403} a^{8} + \frac{471277015158405739292952579506263741013}{49983712115696034557858967615916053611821} a^{7} + \frac{270805001512358894360096215707035011294}{49983712115696034557858967615916053611821} a^{6} + \frac{43622521297252114296541165308921841785297}{199934848462784138231435870463664214447284} a^{5} - \frac{4490901218111535494360082742113310251937}{99967424231392069115717935231832107223642} a^{4} - \frac{27764324091665949532907937793980063715965}{99967424231392069115717935231832107223642} a^{3} + \frac{11215989121647195929002011462148579830573}{49983712115696034557858967615916053611821} a^{2} + \frac{39424824364587811023623320786491649176613}{199934848462784138231435870463664214447284} a - \frac{27122918857416402115837639045203818389395}{99967424231392069115717935231832107223642}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{8}\times C_{22568}$, which has order $2888704$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 400417.1364448253 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_6$ (as 18T2):
| An abelian group of order 18 |
| The 18 conjugacy class representatives for $C_6 \times C_3$ |
| Character table for $C_6 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-21}) \), 3.3.13689.2, \(\Q(\zeta_{9})^+\), 3.3.13689.1, 3.3.169.1, 6.0.12340671610176.4, 6.0.432081216.1, 6.0.12340671610176.3, 6.0.16928218944.4, 9.9.2565164201769.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.5 | $x^{6} - 2 x^{4} + x^{2} - 3$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||