Normalized defining polynomial
\( x^{18} - 6 x^{17} + 22 x^{16} - 59 x^{15} + 110 x^{14} - 126 x^{13} + 64 x^{12} + 20 x^{11} - 28 x^{10} + 5 x^{9} - 28 x^{8} + 20 x^{7} + 64 x^{6} - 126 x^{5} + 110 x^{4} - 59 x^{3} + 22 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1878328153971890270208=-\,2^{12}\cdot 3^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $15.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{15} a^{15} + \frac{2}{15} a^{14} - \frac{4}{15} a^{13} + \frac{4}{15} a^{12} - \frac{2}{15} a^{11} + \frac{4}{15} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{15} a^{6} + \frac{4}{15} a^{5} - \frac{2}{15} a^{4} - \frac{1}{15} a^{3} - \frac{4}{15} a^{2} + \frac{7}{15} a + \frac{2}{5}$, $\frac{1}{252675} a^{16} + \frac{2488}{252675} a^{15} - \frac{27557}{252675} a^{14} - \frac{758}{10107} a^{13} - \frac{101323}{252675} a^{12} - \frac{22583}{252675} a^{11} - \frac{7328}{16845} a^{10} + \frac{68188}{252675} a^{9} - \frac{10372}{84225} a^{8} - \frac{117107}{252675} a^{7} + \frac{7271}{16845} a^{6} - \frac{123653}{252675} a^{5} - \frac{84478}{252675} a^{4} + \frac{19793}{50535} a^{3} - \frac{94937}{252675} a^{2} + \frac{69868}{252675} a - \frac{16844}{252675}$, $\frac{1}{252675} a^{17} - \frac{632}{84225} a^{15} + \frac{11417}{84225} a^{14} + \frac{31882}{252675} a^{13} + \frac{84686}{252675} a^{12} + \frac{100649}{252675} a^{11} - \frac{81032}{252675} a^{10} - \frac{14111}{50535} a^{9} + \frac{31486}{252675} a^{8} - \frac{58}{225} a^{7} + \frac{47182}{252675} a^{6} + \frac{75556}{252675} a^{5} - \frac{80131}{252675} a^{4} + \frac{18371}{84225} a^{3} + \frac{1718}{84225} a^{2} - \frac{41981}{84225} a + \frac{31202}{252675}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{86702}{50535} a^{17} + \frac{450494}{50535} a^{16} - \frac{1533058}{50535} a^{15} + \frac{3825476}{50535} a^{14} - \frac{2093132}{16845} a^{13} + \frac{605877}{5615} a^{12} - \frac{572876}{50535} a^{11} - \frac{2472164}{50535} a^{10} + \frac{16874}{10107} a^{9} + \frac{2090}{10107} a^{8} + \frac{2682886}{50535} a^{7} + \frac{380824}{50535} a^{6} - \frac{1902184}{16845} a^{5} + \frac{2038748}{16845} a^{4} - \frac{3817324}{50535} a^{3} + \frac{1656092}{50535} a^{2} - \frac{554536}{50535} a + \frac{134683}{50535} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3594.02576505 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.2028.1 x3, 3.3.169.1, 6.0.12338352.2, 6.0.771147.1, 6.0.73008.1 x2, 9.3.8340725952.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.73008.1 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $13$ | 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 13.9.6.1 | $x^{9} + 234 x^{6} + 16900 x^{3} + 474552$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |