Normalized defining polynomial
\( x^{18} - 9 x^{17} - 132 x^{16} + 742 x^{15} + 12147 x^{14} - 13221 x^{13} - 634314 x^{12} - 1579305 x^{11} + 17018340 x^{10} + 109842349 x^{9} - 17013828 x^{8} - 2482374477 x^{7} - 9152309280 x^{6} + 6179192277 x^{5} + 169228552005 x^{4} + 703629239684 x^{3} + 1596953609076 x^{2} + 2096104977033 x + 1343941011449 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18777800570904586987097565808700098548206552543232=-\,2^{12}\cdot 3^{24}\cdot 23^{9}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $546.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{37} a^{12} - \frac{6}{37} a^{11} + \frac{14}{37} a^{10} - \frac{15}{37} a^{9} - \frac{10}{37} a^{8} - \frac{10}{37} a^{7} + \frac{8}{37} a^{6} + \frac{14}{37} a^{5} + \frac{10}{37} a^{4} + \frac{16}{37} a^{3} + \frac{14}{37} a^{2} + \frac{1}{37} a - \frac{1}{37}$, $\frac{1}{37} a^{13} + \frac{15}{37} a^{11} - \frac{5}{37} a^{10} + \frac{11}{37} a^{9} + \frac{4}{37} a^{8} - \frac{15}{37} a^{7} - \frac{12}{37} a^{6} - \frac{17}{37} a^{5} + \frac{2}{37} a^{4} - \frac{1}{37} a^{3} + \frac{11}{37} a^{2} + \frac{5}{37} a - \frac{6}{37}$, $\frac{1}{37} a^{14} + \frac{11}{37} a^{11} - \frac{14}{37} a^{10} + \frac{7}{37} a^{9} - \frac{13}{37} a^{8} - \frac{10}{37} a^{7} + \frac{11}{37} a^{6} + \frac{14}{37} a^{5} - \frac{3}{37} a^{4} - \frac{7}{37} a^{3} + \frac{17}{37} a^{2} + \frac{16}{37} a + \frac{15}{37}$, $\frac{1}{37} a^{15} + \frac{15}{37} a^{11} + \frac{1}{37} a^{10} + \frac{4}{37} a^{9} - \frac{11}{37} a^{8} + \frac{10}{37} a^{7} - \frac{9}{37} a^{5} - \frac{6}{37} a^{4} - \frac{11}{37} a^{3} + \frac{10}{37} a^{2} + \frac{4}{37} a + \frac{11}{37}$, $\frac{1}{37} a^{16} + \frac{17}{37} a^{11} + \frac{16}{37} a^{10} - \frac{8}{37} a^{9} + \frac{12}{37} a^{8} + \frac{2}{37} a^{7} - \frac{18}{37} a^{6} + \frac{6}{37} a^{5} - \frac{13}{37} a^{4} - \frac{8}{37} a^{3} + \frac{16}{37} a^{2} - \frac{4}{37} a + \frac{15}{37}$, $\frac{1}{72234179172943325057563031319603948535392135643919185693580056703} a^{17} + \frac{629842605769142102337044341837215692182683479059815835884056158}{72234179172943325057563031319603948535392135643919185693580056703} a^{16} - \frac{874210986593457335992570971986043998190060216927469923065158840}{72234179172943325057563031319603948535392135643919185693580056703} a^{15} - \frac{575348982010698080313922808189950199801462427913595437155178211}{72234179172943325057563031319603948535392135643919185693580056703} a^{14} - \frac{159997467934957681665382902551604728755465800675640830408321641}{72234179172943325057563031319603948535392135643919185693580056703} a^{13} + \frac{312233198741960207466884939616997141837124881724028025968989563}{72234179172943325057563031319603948535392135643919185693580056703} a^{12} + \frac{29711675580852237631903873976450018287859268864379005722621500889}{72234179172943325057563031319603948535392135643919185693580056703} a^{11} + \frac{15804942329455848975773961215981721299669287528440660203771982665}{72234179172943325057563031319603948535392135643919185693580056703} a^{10} - \frac{16057149531138207710212231758021581076219429211212913006041970147}{72234179172943325057563031319603948535392135643919185693580056703} a^{9} - \frac{29833455049562198179397264888197346330807518871448680120643177684}{72234179172943325057563031319603948535392135643919185693580056703} a^{8} - \frac{25024678294745191589497492442267685796463239891061594174644318562}{72234179172943325057563031319603948535392135643919185693580056703} a^{7} + \frac{22925020886426572579995230454514134252347129292526026235856071886}{72234179172943325057563031319603948535392135643919185693580056703} a^{6} + \frac{1996690402655207810448307485946148775242656267366904262510674933}{72234179172943325057563031319603948535392135643919185693580056703} a^{5} + \frac{21502244295879438384279536965984389486429301429903768306461385015}{72234179172943325057563031319603948535392135643919185693580056703} a^{4} - \frac{15880448048572375770404826307403937549908141872852213437535310128}{72234179172943325057563031319603948535392135643919185693580056703} a^{3} + \frac{943888624226884067847824477887288948430597451786229129934003136}{1952275112782252028582784630259566176632219882268086099826488019} a^{2} - \frac{30817046421316415592951534460446583932510038529808139667946793366}{72234179172943325057563031319603948535392135643919185693580056703} a - \frac{48970436476472942915877365458697155343899986299156867164332079}{478372047502935927533530008739098996923126726118670103930993753}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}\times C_{3}\times C_{14783202}$, which has order $1197439362$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 118546543.87559307 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_6\times S_3$ (as 18T6):
| A solvable group of order 36 |
| The 18 conjugacy class representatives for $S_3 \times C_6$ |
| Character table for $S_3 \times C_6$ |
Intermediate fields
| \(\Q(\sqrt{-23}) \), 3.3.110889.1, 3.3.148.1, 6.0.149609937695607.1, 6.0.266505968.3, 9.9.3228844269788073792.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 18 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/41.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $3$ | 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| $23$ | 23.6.3.2 | $x^{6} - 529 x^{2} + 48668$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 23.12.6.1 | $x^{12} + 365010 x^{6} - 6436343 x^{2} + 33308075025$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $37$ | 37.6.4.1 | $x^{6} + 518 x^{3} + 171125$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ |
| 37.12.10.1 | $x^{12} + 1998 x^{6} + 21390625$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |