Normalized defining polynomial
\( x^{18} - 2 x^{17} + 16 x^{16} - 114 x^{15} + 486 x^{14} - 1617 x^{13} + 5983 x^{12} - 21824 x^{11} + 61120 x^{10} - 124458 x^{9} + 193737 x^{8} - 252336 x^{7} + 307981 x^{6} - 344420 x^{5} + 321958 x^{4} - 236085 x^{3} + 139299 x^{2} - 130761 x + 126963 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-18665884703684652969692527276032=-\,2^{12}\cdot 3^{9}\cdot 7^{10}\cdot 31^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{9} - \frac{1}{3} a^{5} - \frac{4}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{4}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{5}$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{10} + \frac{1}{9} a^{7} - \frac{4}{27} a^{6} + \frac{1}{9} a^{5} - \frac{2}{27} a^{4} - \frac{2}{9} a^{3} - \frac{4}{9} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{12} - \frac{4}{81} a^{11} + \frac{1}{81} a^{10} + \frac{1}{27} a^{9} + \frac{1}{27} a^{8} + \frac{2}{81} a^{7} + \frac{7}{81} a^{6} + \frac{25}{81} a^{5} - \frac{4}{81} a^{4} + \frac{2}{9} a^{3} - \frac{2}{27} a^{2} - \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{12} - \frac{1}{27} a^{11} - \frac{2}{81} a^{10} - \frac{1}{27} a^{9} + \frac{5}{81} a^{8} + \frac{8}{81} a^{6} + \frac{13}{27} a^{5} + \frac{2}{81} a^{4} - \frac{5}{27} a^{3} - \frac{2}{27} a^{2} + \frac{4}{9} a + \frac{2}{9}$, $\frac{1}{243} a^{15} - \frac{1}{243} a^{13} + \frac{2}{243} a^{12} - \frac{4}{81} a^{11} + \frac{1}{243} a^{10} - \frac{10}{243} a^{9} - \frac{11}{81} a^{8} + \frac{13}{243} a^{7} - \frac{14}{243} a^{6} + \frac{29}{81} a^{5} + \frac{113}{243} a^{4} - \frac{8}{81} a^{3} + \frac{31}{81} a^{2} + \frac{10}{27} a - \frac{7}{27}$, $\frac{1}{243} a^{16} - \frac{1}{243} a^{14} - \frac{1}{243} a^{13} + \frac{13}{243} a^{11} + \frac{5}{243} a^{10} + \frac{4}{81} a^{9} + \frac{4}{243} a^{8} + \frac{7}{243} a^{7} + \frac{10}{81} a^{6} - \frac{97}{243} a^{5} - \frac{19}{81} a^{4} + \frac{4}{81} a^{3} - \frac{13}{27} a - \frac{2}{9}$, $\frac{1}{2571602451955508115404013058005339} a^{17} + \frac{4204197884143228953088347575603}{2571602451955508115404013058005339} a^{16} + \frac{63227088378140099927865971549}{285733605772834235044890339778371} a^{15} + \frac{181926122044465867680695462332}{857200817318502705134671019335113} a^{14} - \frac{583951995824976034880181733538}{285733605772834235044890339778371} a^{13} - \frac{1988972614407540873688160116114}{285733605772834235044890339778371} a^{12} - \frac{93747790477254741092333362471007}{2571602451955508115404013058005339} a^{11} + \frac{2112523047689821830412823701763}{2571602451955508115404013058005339} a^{10} + \frac{4518340105287333870278958259069}{95244535257611411681630113259457} a^{9} + \frac{85460825248346647873755069941410}{857200817318502705134671019335113} a^{8} + \frac{563195251495385464519726915265}{31748178419203803893876704419819} a^{7} + \frac{26122770473127931178942699832068}{285733605772834235044890339778371} a^{6} - \frac{546382888189958008830175990167950}{2571602451955508115404013058005339} a^{5} + \frac{1206132362693769377132696880814784}{2571602451955508115404013058005339} a^{4} + \frac{89916646068663970930424120387707}{285733605772834235044890339778371} a^{3} + \frac{222337820040408128810269531960441}{857200817318502705134671019335113} a^{2} - \frac{123810489509855262187067540325706}{285733605772834235044890339778371} a + \frac{66149769715766565538191374831762}{285733605772834235044890339778371}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{55919525118659528}{19669355733881560089393} a^{17} + \frac{188573743120357555}{19669355733881560089393} a^{16} + \frac{299007753330834347}{6556451911293853363131} a^{15} - \frac{695969295971892493}{6556451911293853363131} a^{14} + \frac{638181969623069746}{6556451911293853363131} a^{13} - \frac{1158051162136249313}{6556451911293853363131} a^{12} + \frac{73519359275405503898}{19669355733881560089393} a^{11} - \frac{142429975104130465031}{19669355733881560089393} a^{10} - \frac{108077241736940251718}{6556451911293853363131} a^{9} + \frac{463477561192634118941}{6556451911293853363131} a^{8} - \frac{328240354406823678412}{6556451911293853363131} a^{7} - \frac{863601145902108423946}{6556451911293853363131} a^{6} + \frac{8563004073621646538261}{19669355733881560089393} a^{5} - \frac{9845432429977538068544}{19669355733881560089393} a^{4} + \frac{1580971888917259944313}{2185483970431284454377} a^{3} - \frac{4942857528174734940073}{6556451911293853363131} a^{2} + \frac{1313153521012351323796}{2185483970431284454377} a - \frac{27904668054178861310}{2185483970431284454377} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4121877351.3792276 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3^2$ (as 18T46):
| A solvable group of order 108 |
| The 27 conjugacy class representatives for $C_3\times S_3^2$ |
| Character table for $C_3\times S_3^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.1.2604.1, 6.0.1271403.2, 6.0.20342448.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.3.2 | $x^{6} - 49 x^{2} + 686$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 31.6.3.1 | $x^{6} - 62 x^{4} + 961 x^{2} - 2413071$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 31.6.5.1 | $x^{6} - 31$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |