Normalized defining polynomial
\( x^{18} - 10 x^{16} + 21 x^{14} + 278 x^{12} - 780 x^{10} + 2410 x^{8} + 6301 x^{6} - 23210 x^{4} + 16577 x^{2} + 5324 \)
Invariants
| Degree: | $18$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1857267642320843141188551851=-\,11^{9}\cdot 31^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{2} a^{3} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{12} a^{8} - \frac{5}{12} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{9} - \frac{5}{12} a^{3} + \frac{1}{3} a$, $\frac{1}{24} a^{10} - \frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{5}{24} a^{4} - \frac{7}{24} a^{3} - \frac{1}{8} a^{2} + \frac{1}{3} a - \frac{1}{6}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{8} - \frac{5}{24} a^{5} + \frac{1}{6} a^{3} + \frac{5}{24} a^{2} - \frac{1}{6}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{9} - \frac{5}{24} a^{6} + \frac{1}{6} a^{4} + \frac{5}{24} a^{3} - \frac{1}{6} a$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} - \frac{1}{48} a^{11} - \frac{1}{48} a^{10} + \frac{1}{48} a^{9} + \frac{1}{48} a^{8} - \frac{5}{48} a^{7} - \frac{7}{48} a^{6} - \frac{1}{16} a^{5} - \frac{11}{48} a^{4} - \frac{7}{16} a^{3} + \frac{1}{16} a^{2} + \frac{1}{3} a - \frac{5}{12}$, $\frac{1}{2112} a^{14} - \frac{1}{66} a^{12} - \frac{1}{176} a^{10} - \frac{1}{24} a^{9} - \frac{37}{1056} a^{8} + \frac{113}{528} a^{6} - \frac{41}{528} a^{4} - \frac{7}{24} a^{3} - \frac{173}{704} a^{2} - \frac{1}{6} a + \frac{3}{16}$, $\frac{1}{4224} a^{15} - \frac{1}{4224} a^{14} - \frac{1}{132} a^{13} + \frac{1}{132} a^{12} + \frac{19}{1056} a^{11} - \frac{19}{1056} a^{10} - \frac{27}{704} a^{9} - \frac{7}{2112} a^{8} + \frac{113}{1056} a^{7} - \frac{113}{1056} a^{6} + \frac{113}{1056} a^{5} - \frac{113}{1056} a^{4} + \frac{443}{1408} a^{3} + \frac{1663}{4224} a^{2} - \frac{47}{96} a + \frac{31}{96}$, $\frac{1}{4815178435584} a^{16} - \frac{5782927}{1605059478528} a^{14} + \frac{871568727}{133754956544} a^{12} + \frac{8550967729}{2407589217792} a^{10} - \frac{1}{24} a^{9} + \frac{45138747847}{2407589217792} a^{8} + \frac{1038517369}{12539527176} a^{6} + \frac{423096045469}{4815178435584} a^{4} + \frac{5}{24} a^{3} - \frac{17402996867}{437743494144} a^{2} + \frac{1}{3} a - \frac{2477531399}{9948715776}$, $\frac{1}{9630356871168} a^{17} - \frac{1}{9630356871168} a^{16} - \frac{5782927}{3210118957056} a^{15} + \frac{5782927}{3210118957056} a^{14} + \frac{871568727}{267509913088} a^{13} - \frac{871568727}{267509913088} a^{12} - \frac{91765249679}{4815178435584} a^{11} + \frac{91765249679}{4815178435584} a^{10} - \frac{55177469561}{4815178435584} a^{9} + \frac{55177469561}{4815178435584} a^{8} + \frac{1038517369}{25079054352} a^{7} + \frac{5231246219}{25079054352} a^{6} + \frac{1426258219549}{9630356871168} a^{5} - \frac{1426258219549}{9630356871168} a^{4} - \frac{218035431683}{875486988288} a^{3} - \frac{219708062461}{875486988288} a^{2} + \frac{838707193}{19897431552} a + \frac{4135650695}{19897431552}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $8$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10795929.0484 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times S_3$ (as 18T3):
| A solvable group of order 18 |
| The 9 conjugacy class representatives for $S_3 \times C_3$ |
| Character table for $S_3 \times C_3$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 3.1.10571.1 x3, 3.3.961.1, 6.0.1229206451.1, 6.0.1279091.2 x2, 6.0.1229206451.2, 9.3.1181267399411.1 x3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 6 sibling: | 6.0.1279091.2 |
| Degree 9 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}$ | R | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $31$ | 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |
| 31.9.6.1 | $x^{9} + 837 x^{6} + 232562 x^{3} + 21717639$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ |